Câncer hereditário

Câncer hereditário

Entenda mais sobre o câncer hereditário

Segundo o Instituto Nacional de Câncer, são estimados 625 mil novos casos de câncer em 2021, sendo que até 10% desses casos são hereditários. No entanto, segundo as Sociedades Brasileiras de Patologia e de Cirurgia Oncológica, durante a pandemia do SARS-CoV-2 o número de diagnósticos caiu 75%. Isso indica que três a cada quatro casos de câncer não foram detectados.

A identificação precoce do câncer é essencial e aumenta as chances de cura. Por isso, testes genéticos para detecção de câncer hereditários são tão importantes.

 

O que é o Câncer Hereditário?

Câncer é um grupo de mais de 100 doenças causadas por alterações em genes que atuam na divisão e crescimento celular. Essas alterações fazem com que os genes não executem suas funções corretamente levando as células a se dividirem incontrolavelmente.

Imagem mostrando a diferença na multiplicação celular do tecido normal e do tecido canceroso

Figura 1: Ilustração sobre a divisão desordenada das células tumorais afetando um órgão.

 

Os tipos de câncer variam de acordo com o órgão afetado e causa, e podem ser classificados como esporádicos ou hereditários. Os cânceres esporádicos são os mais comuns, causados pelo acúmulo de várias alterações genéticas (mutações) ao longo da vida. Já os hereditários são causados por alterações genéticas passadas de uma geração para a outra, e contabilizam até 10% do total de casos de câncer.

Como as alterações são herdadas dos pais, elas estão presentes em todas as células do paciente, podendo causar diferentes tipos de câncer, em diferentes órgãos, e podem ser transmitidas para os filhos, mantendo o risco aumentado de câncer na família.

 

Quais mutações estão relacionadas ao câncer hereditário?

Já foram identificadas mutações em diversos genes associados ao desenvolvimento de mais de 50 síndromes de câncer hereditário. A tabela abaixo mostra os principais genes estudados e os tipos de câncer mais comumente associados a eles.

Tabela indicando exemplos das principais síndromes de câncer hereditário, assim como os genes relacionados

 

Importância do diagnóstico genético do câncer hereditário

Como o câncer hereditário é causado por mutações que estão presentes em todas as células do paciente, pode haver recorrência da doença.

A Síndrome de Li-Fraumeni, por exemplo, é caracterizada pelo aparecimento de múltiplos tumores em diversos tecidos do corpo. Os casos hereditários de câncer de mama também podem acometer ambas as mamas em momentos diferentes.

O diagnóstico de câncer hereditário informa o paciente de que ele deve se atentar mais aos cuidados com a saúde para identificar novos tumores o mais cedo possível, ou até evitar que eles apareçam. O exame também beneficia familiares do paciente, que podem identificar se herdaram mutações que aumentam o risco de câncer, antes mesmo que a doença se manifeste.

É importante salientar que herdar essas variantes não significa que o familiar vai, necessariamente, desenvolver câncer em algum momento da vida. As variantes conferem um risco aumentado, ou seja, indivíduos que possuem essas variantes têm maiores chances de ter câncer do que indivíduos que possuem versões não alteradas dos genes.

Alguns cuidados podem ser tomados para diminuir a contribuição de outros fatores, não genéticos, no desenvolvimento de câncer, como:

  • Ter uma alimentação balanceada e saudável
  • Praticar exercícios físicos
  • Eliminar o consumo de cigarros, cachimbos etc
  • Diminuir a exposição à fumaças (poluição, cigarro)
  • Diminuir o consumo de álcool

Além disso, medidas preventivas mais drásticas podem ser tomadas, como aconteceu no caso da atriz Angelina Jolie.

 

Caso Angelina Jolie

Em 2013, a atriz divulgou na revista americana New York Times, que havia feito uma dupla mastectomia (remoção das duas mamas) para prevenir a ocorrência de câncer de mama.

Considerando que várias outras mulheres na sua família, como a mãe, a avó e tias maternas, haviam falecido de câncer de mama ou ovário, Angelina fez um teste genético e descobriu que possuía uma alteração do gene BRCA1, que aumenta o risco de desenvolver a doença. Por isso, resolveu fazer o procedimento cirúrgico para se prevenir.

Saiba mais nesse artigo.

Na época, um exame como esse era inacessível para a maior parte da população, custando até R$14.000,00. Hoje existem muitos exames capazes de detectar alterações que aumentam o risco de diversos cânceres hereditários, por valores muito mais acessíveis. 

Pensando em tornar o diagnóstico de câncer hereditário rápido, preciso e acessível para todos que precisam, a Mendelics oferece o Painel de Câncer de Mama e Ovário Hereditários, o Painel de Câncer Colorretal Hereditário, os Painéis de Câncer Hereditário, o Painel de Câncer de Próstata Hereditário, além de outros 30 exames para análise de genes específicos.

É importante lembrar que, mesmo com as medidas preventivas, familiares e portadores de síndromes de câncer hereditário devem fazer consultas regulares a um médico.

Consulte seu médico. Previna-se.

Veja também o boletim Genética na Saúde com Mendelics, produzido pela G-lab e divulgado na CBN.


Referências

Instituto Nacional do Câncer

National Cancer Institute 

Você conhece a hemocromatose, a doença do Felipe Neto?

Você conhece a hemocromatose, a doença do Felipe Neto?

O que é Hemocromatose?

Recentemente (18/06), o Youtuber Felipe Neto publicou em suas redes sociais que havia sido diagnosticado com hemocromatose incompleta heterozigótica. Você conhece essa doença?

Hemocromatose se refere a doenças caracterizadas pelo acúmulo de ferro em vários órgãos como o fígado, coração e pâncreas. Os altos níveis de ferro danificam esses órgãos levando ao aparecimento de vários sintomas diferentes.

A forma mais comum de hemocromatose, também conhecida como hemocromatose clássica ou hemocromatose tipo I, afeta cerca de 1 a cada 100 pessoas mundialmente, em especial no norte da Europa.

 

Quais os sinais e sintomas da Hemocromatose?

O aumento dos níveis de ferro ocorre gradativamente por toda a vida, e os sintomas geralmente surgem entre os 40 e 60 anos de idade, sendo que as mulheres começam a ter sintomas, em média, dez anos mais tarde que os homens.

Pacientes com hemocromatose podem apresentar uma ampla gama de sintomas, pois o ferro se acumula e danifica diversos órgãos. Os sintomas mais comuns são:

  • Fadiga
  • Inflamação e dor nas juntas, principalmente nas mãos e joelhos
  • Dor abdominal
  • Perda de peso
  • Mudança da coloração da pele para tons “metálicos” (acinzentado ou cobre)

Se não tratada, a doença pode levar a sintomas mais graves como cirrose, diabetes e falência cardíaca.

 

Quais as causas da hemocromatose?

A hemocromatose clássica é causada por alterações no gene HFE, responsável por codificar a proteína que atua no controle dos níveis de ferro no organismo. Nos pacientes com hemocromatose, essa proteína não funciona corretamente e o corpo absorve mais ferro que o necessário.

As mutações mais comuns do gene HFE são conhecidas como C282Y e H63D. Cerca de 90% dos casos de hemocromatose são resultantes da mutação C282Y.

A hemocromatose tipo 2, também conhecida como hemocromatose juvenil, se manifesta por volta dos 20 anos de idade e é causada por alterações nos genes HJV e HAMP.

A hemocromatose tipo 3 geralmente se manifesta um pouco mais tarde que a do tipo 2, mais ainda antes dos 30 anos, na maioria dos casos. É causada por alterações no gene TFR2.

A hemocromatose tipo 4, também conhecida como doença da ferroportina, se manifesta como a forma clássica, após os 40 anos, e é causada por alterações no gene SLC40A1.

 

Como a hemocromatose é herdada?

A hemocromatose é uma doença de padrão autossômico recessivo, o que significa que é necessário herdar cópias alteradas do gene HFE de ambos os pais para desenvolver a doença.

Quando alguém possui uma cópia saudável e uma cópia alterada de um gene, dizemos que essa pessoa é heterozigota para a alteração nesse gene. Esse é o caso do Felipe Neto.

O Youtuber foi diagnosticado com hemocromatose incompleta heterozigótica. Isso significa que ele tem uma cópia alterada.

Pessoas que herdam somente uma cópia alterada desse gene são consideradas portadoras e podem não desenvolver os sintomas da doença. Os portadores têm risco aumentado de ter filhos com a doença.

Figura representando graficamente como se dá a herança recessiva

Figura 1. Padrão de herança recessiva

 

Como é feito o diagnóstico?

O diagnóstico inicial é feito pela dosagem de ferritina, um exame bioquímico que mede a concentração de ferro disponível no organismo. Caso sejam detectados níveis altos de ferritina, outros exames devem ser feitos para confirmar o diagnóstico.

O exame genético pode ser feito com esse propósito e traz informações mais compreensivas sobre o quadro do paciente, pois identifica quais as mutações que estão causando a doença. Essa informação é muito importante, pois mutações diferentes causam quadros com diferentes severidades.

Um diagnóstico precoce é sempre importante, pois permite que o tratamento seja iniciado o mais cedo possível e evita as consequências mais graves da doença. Isso vale para qualquer doença. 

 

Quais são os tratamentos?

Por ser uma doença genética, não é possível curar a hemocromatose hereditária, mas é possível controlar a doença para evitar os sintomas.

O tratamento vai depender da severidade de cada caso. O objetivo é baixar os níveis de ferro e controlar para que eles permaneçam dentro de intervalos saudáveis.

Para isso, várias medidas podem ser tomadas, desde uma dieta controlada, com pouca ingestão de alimentos ricos em ferro, como carnes e grãos, até o uso de medicamentos e sangria, que funciona como uma doação de sangue, mas esse sangue é descartado.

Pacientes com casos mais graves, que já desenvolveram outras complicações como diabetes e cirrose, precisam de tratamentos específicos para cuidar desses outros problemas.

Mantendo os níveis de ferro dentro de um intervalo saudável, sendo por dieta, terapias medicamentosas ou sangria, o paciente não desenvolve os sintomas e tem uma vida normal.

 

Diagnóstico genético e a Mendelics

É importante ressaltar que exames de diagnóstico só podem ser realizados mediante solicitação e acompanhamento médico. Por isso converse com o seu médico!

Na Mendelics possuímos o Painel de Hemocromatoses, que analisa o gene HFE, e as mutações C282Y e H63D, além de outros quatro genes (HAMP, HJV, SLC40A1, TFR2), que podem causar os outros tipos de hemocromatose.

Quer saber mais sobre testes genéticos para diagnóstico das hemocromatoses? Deixe sua pergunta nos comentários abaixo ou entre em contato com a nossa equipe pelo telefone (11) 5096-6001 ou através do nosso site.


Referências

https://twitter.com/felipeneto/status/1405955892655366146

https://rarediseases.org/rare-diseases/classic-hereditary-hemochromatosis/

https://medlineplus.gov/genetics/condition/hereditary-hemochromatosis/

https://www.niddk.nih.gov/health-information/liver-disease/hemochromatosis/symptoms-causes

https://www.msdmanuals.com/pt/casa/dist%C3%BArbios-do-sangue/sobrecarga-de-ferro/hemocromatose

Admirável Mundo Novo e a Manipulação Genética

Admirável Mundo Novo e a Manipulação Genética

Admirável Mundo Novo: Utopia ou profecia?

Se você já leu Admirável Mundo Novo, o famoso romance de Aldous Huxley, sabe que o livro retrata uma realidade muito diferente da que conhecemos hoje, onde a manipulação genética em humanos é uma prática rotineira. Se você não leu o livro, talvez tenha assistido o filme Gattaca, um clássico da ficção científica dos anos 1990, e que também retrata uma realidade distópica semelhante.

Em Admirável Mundo Novo, a genética humana foi moldada para o desenvolvimento de uma sociedade completamente saudável, sem qualquer doença, onde cada indivíduo é criado para um fim predeterminado.

Nesse post vamos falar um pouco sobre o mundo distópico apresentado no livro e discutir o que é realidade e o que é pura ficção.

 

Admirável mundo novo

A história se passa em um futuro distópico onde as pessoas são geradas de maneira totalmente artificial. Enquanto em Gattaca os embriões eram selecionados e inseminados artificialmente para passarem por uma gestação tradicional, em Admirável Mundo Novo todos são gerados e criados em uma espécie de fábrica até atingirem a idade adulta (1).

Se Gattaca já estava muito além do seu tempo, Admirável Mundo Novo, escrito em 1932, está tão distante da realidade que pode parecer completamente impossível.

Os cientistas responsáveis pela produção de embriões nessas fábricas usam diversas técnicas para alavancar o desenvolvimento de pessoas mais fortes e inteligentes para ocupar as posições mais altas da sociedade, e comprometer o desenvolvimento daquelas que ocuparão as posições mais baixas (1).

Todo o processo de seleção e desenvolvimento dos embriões é feito de forma a condicionar (treinar) aquele futuro indivíduo a exercer a sua função. Por exemplo, aqueles que trabalharão em locais mais quentes, como países tropicais ou dentro de fábricas, são inseminados e gerados em temperaturas maiores para que se acostumem a climas quentes (1).

Admirável Mundo Novo leva a manipulação genética ao extremo, insinuando que, no futuro, será possível desenvolver pessoas sob medida, controlando cada aspecto da fisiologia e comportamento.

Apesar de muito do que foi proposto no livro não respeitar as limitações da manipulação genética, ele mostra como essas técnicas podem ser utilizadas para melhorar a qualidade de vida das pessoas, diminuindo a incidência de doenças. Mas, então, o que é real e o que é ficção em Admirável Mundo Novo?

Tabela indicando o que é ficção e o que é real em Admirável Mundo Novo

 

Genética e Comportamento

As “fábricas de pessoas” de Admirável Mundo Novo, além de criarem os embriões todos in vitro, simulam as gestações desses embriões de forma totalmente sintética. Durante a gestação, os embriões são submetidos a diferentes condições de temperatura, luminosidade, e diferentes dietas, a depender da função que esse indivíduo deve exercer no futuro (1).

Esse condicionamento é a característica mais fantástica do processo reprodutivo descrito no livro, e corresponde muito pouco com a realidade.

Sabemos que algumas características do nosso comportamento têm contribuição genética. Na verdade, epigenética (abaixo). Mas o efeito do ambiente (educação, cultura, meio ambiente, estilo de vida etc), das nossas experiências, é muito mais marcante na determinação do nosso comportamento (2).

Epigenética: é um conjunto de alterações químicas que as nossas células usam para determinar quais genes ficam “ligados” e quais ficam “desligados”.

Porém, a relação entre o quanto da nossa epigenética pode ser “moldada” pelo ambiente, como a exposição a diferentes temperaturas ou diferentes dietas, ainda é muito pouco compreendida.

Além disso, sabemos que a epigenética muda durante a vida. Mesmo gêmeos idênticos (univitelinos), que têm o mesmo DNA, podem se tornar muito diferentes ao longo da vida, com epigenéticas bastante distintas (2).

Por isso, mesmo que fosse possível modelar o comportamento durante o desenvolvimento de um embrião, não há como impedir que ele mude durante a vida.

E, finalmente, alterar o processo natural de regulação epigenética utilizando essas técnicas de condicionamento pode causar alguns problemas. Erros nesse processo de regulação de genes ligados e desligados podem causar algumas síndromes, como:

    • Russel-Silver: alterações no braço curto do cromossomo 11 (em 11p15).
    • Angelman: alterações no braço longo do cromossomo 15 (em 15q11.2).
    • Prader-Willi: alterações no braço longo do cromossomo 15 (em 15q11.2). 
    • Beckwith-Wiedemann: alterações no braço curto do cromossomo 11 (em 11p15).

Apesar de não termos como controlar o surgimento dessas doenças, já é possível diagnosticá-las. A Mendelics disponibiliza exames de diagnóstico genético para essas quatro síndromes, além de muitas outras doenças de base genética.

 

Teste de Triagem de Portador – o que podemos fazer hoje?

Em Admirável Mundo Novo, as pessoas são “fabricadas” dentro de enormes laboratórios a partir de óvulos e espermatozoides selecionados (1). Como o livro foi escrito muito antes do surgimento das técnicas utilizadas para testes genéticos, não fica claro como essa seleção é feita.

Hoje temos testes específicos para verificar se os pais (e seus óvulos e espermatozóides) possuem alguma variante genética que pode ser passada para os filhos e causar doenças. São os testes de Triagem de Portador.

O Teste de Triagem de Portador da Mendelics testa mais de 160 genes associados ao desenvolvimento de mais de 150 doenças de base genética.

Assim, conhecendo os riscos de passarem variantes genéticas patogênicas (que causam doenças) para os filhos, os pais podem optar por fazer uma fertilização in vitro (FIV) e teste de diagnóstico genético pré-implantacional (PGD), para garantir que o bebê não receba essas variantes.

No entanto, o número de doenças que podemos analisar com esses testes ainda é limitado.

Conheça mais sobre Testes de Portador e Testes de Diagnóstico Genético Pré-Implantacional, além do nosso portfólio completo de exames genéticos no nosso site.

 


Referências:

  1. Aldous Huxley, Admirável Mundo Novo, 11ª ed. Rio de Janeiro: Hemus – Livraria Editora Ltda., 1969.
  2. D. S. Moore, “Behavioral epigenetics,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 9, no. 1, p. e1333, Dec. 2016, doi: 10.1002/wsbm.1333.
O Genoma Brasileiro

O Genoma Brasileiro

Como o genoma brasileiro contribui com a medicina mundial

Quando olhamos para as diferentes populações ao redor do mundo, fica fácil ver como os seres humanos são diversos. Em cada região temos uma população com características próprias e muito diversas.

São infinitos tons de pele, olhos e cabelos. Diferenças no formato dos olhos, do rosto, da textura dos fios do cabelo e tantos outros traços físicos visíveis. Mas, a diversidade humana não está só nas características físicas.

Diferentes populações apresentam diferentes predisposições e prevalência para várias doenças, e isso se deve, em boa parte, às diferenças nos seus genomas.

 

Porque as populações são geneticamente diversas?

Essas diferenças surgiram porque as populações se desenvolveram em diferentes partes do planeta, e precisaram se adaptar a ambientes diferentes, e se mantiveram por conta de barreiras geográficas ou culturais que impediam que se misturassem ao longo do tempo.

Porém, alguns países passaram por vários eventos migratórios que resultaram na miscigenação de povos diferentes. O Brasil foi um desses países. (1,2)

No Brasil, os colonizadores portugueses se relacionaram com os habitantes nativos americanos e, posteriormente, com escravos trazidos do continente africano. Além disso, houveram outros eventos migratórios importantes de italianos, holandeses, alemães, povos do oriente médio e leste asiático, como Japão e China, dentre outros. (1,2)

Assim, a população brasileira possui uma composição genética única, híbrida de vários povos diferentes.

 

Diversidade genética nos Bancos de Dados

Populações miscigenadas podem apresentar variantes genéticas que são pouco frequentes ou inexistentes no restante do mundo e, por isso, não vão estar representadas nos bancos de dados de outras populações.

Se essas variantes forem patogênicas (causarem doenças), esses bancos de dados não serão capazes de avaliar de maneira eficiente o efeito delas na nossa saúde.

Além disso, variantes raras associadas com doenças em outros lugares do mundo, podem ser mais comuns em populações miscigenadas e, portanto, não estão relacionadas com o desenvolvimento de doenças raras nessas populações.

Está clara a importância de realizar testes de diagnóstico genético utilizando um banco de dados que represente o genoma da população brasileira. Um genoma como o seu!

Infelizmente, a maior parte dos estudos sobre doenças genéticas são feitos utilizando bancos de dados de indivíduos europeus, ou de descendência europeia. Somente cerca de 20% dos indivíduos reportados em estudos de associação genética inseridos no Catálogo GWAS (Genome Wide Association Studies) são não-europeus. (3)

A Mendelics é o primeiro laboratório brasileiro dedicado à análise genômica e já analisou mais de 100 mil amostras, sendo mais de 60 mil exomas completos, formando o maior banco de dados genômicos da América Latina!

 

A importância do genoma brasileiro/latino americano

Não há dúvidas de que a população brasileira é diversa. Mas quanto? Vamos tentar colocar em números:

  • O projeto internacional HGDP (Human Genome Diversity Project), que investiga a variabilidade genética do ser humano, encontrou cerca de 73 milhões de variantes genéticas em um total de 54 populações espalhadas pelo mundo todo. (4)
  • Estudos nacionais sobre a variabilidade genética somente da população brasileira, encontraram mais de 61 milhões de variantes. (5)

Temos, só no Brasil, quase a mesma variabilidade encontrada no mundo todo. O nosso genoma é muito diverso! 

Esses estudos também mostraram que mais de 2 milhões das variantes genéticas encontradas no genoma brasileiro são inéditas. Ou seja, mais de 2 milhões das variantes brasileiras nunca haviam sido reportadas antes, em nenhum outro lugar do mundo. (5)

Considerando que o genoma brasileiro é muito diverso, ele contribui muito com a caracterização da variabilidade genética humana e com estudos de doenças genéticas que podem afetar pessoas no mundo todo. O estudo do genoma brasileiro pode trazer ganhos para a medicina mundial.

A fim de contribuir com a comunidade médica, a Mendelics já fez mais de 9 mil depósitos no Clinvar (banco de dados que reúne informações sobre alterações genéticas que causam doenças) (6), e é a segunda maior contribuinte do repositório fora dos Estados Unidos.

Também contribuímos com o estudo da variabilidade genética humana alimentando o maior banco de dados genômicos da América Latina!

Quer entender melhor como o Banco de Dados Mendelics pode auxiliar no diagnóstico de doenças raras no Brasil e na América Latina?

Assista essa aula ministrada por médicos geneticistas da Mendelics, onde são apresentados casos reais em que o nosso banco de dados foi crucial para o diagnóstico: Aula banco de dados genéticos – Mendelics

Conheça mais sobre as origens do povo brasileiro e como descobrir de onde vieram seus ancestrais nesse post!

 


Referências

  1. S. D. J. Pena, F. R. Santos, and E. Tarazona‐Santos, “Genetic admixture in Brazil,” American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol. 184, no. 4, pp. 928–938, Nov. 2020, doi: 10.1002/ajmg.c.31853.
  2. R. B. Andrade et al., “Estimating Asian Contribution to the Brazilian Population: A New Application of a Validated Set of 61 Ancestry Informative Markers”, G3, vol. 8, no. 11, pp. 3577–3582, Nov. 2018, doi: 10.1534/g3.118.200650.
  3. G. Sirugo, S. M. Williams, and S. A. Tishkoff, “The Missing Diversity in Human Genetic Studies,” Cell, vol. 177, no. 1, pp. 26–31, Mar. 2019, doi: 10.1016/j.cell.2019.02.048.
  4. A. Bergström et al., “Insights into human genetic variation and population history from 929 spanerse genomes,” Science, vol. 367, no. 6484, p. eaay5012, Mar. 2020, doi: 10.1126/science.aay5012.
  5. M. S. Naslavsky et al., “Whole-genome sequencing of 1,171 elderly admixed inspaniduals from the largest Latin American metropolis (São Paulo, Brazil)”, Set. 2020, doi: 10.1101/2020.09.15.298026.
  6. ClinVar, “Mendelics – Submitter – ClinVar”. Acesso em 30 de abril de 2021. Disponível em: https://www.ncbi.nlm.nih.gov/clinvar/submitters/500035/
Glossário de genética III

Glossário de genética III

Entenda termos importantes sobre alterações genéticas

Na terceira edição do Glossário de Genética, descrevemos os principais termos utilizados quando falamos sobre alterações no nosso genoma.

Quer saber mais? Leia as edições I e II do nosso Glossário para conhecer os principais termos em genética, genômica e técnicas de sequenciamento.

 

Mutação

A palavra “mutação” é amplamente usada para comunicar qualquer diferença entre a sequência de bases no genoma individual que está sendo sequenciado e a sequência mantida em um genoma de referência. 

Contudo, também é comumente interpretada como sinônimo de uma alteração que ‘causa uma doença’, por isso, tem uma conotação historicamente negativa. 

Temos entre 4 a 5 milhões de “mutações” em nosso DNA. Porém, a maioria dessas alterações não estão associadas a doenças, e podem estar ligadas a outras características (exemplo: cor do olho). 

Após a popularização dos estudos genômicos e o maior conhecimento do genoma humano, o uso da palavra “mutação”, passou a ser evitada e substituída pelo termo neutro ‘variante’.

 

Variante

Qualquer diferença entre a sequência do genoma individual que está sendo sequenciado em relação a um genoma de referência. 

As variantes podem ser classificadas com base no seu impacto clínico ou o tipo de alteração que causam na sequência do DNA.

As classificações clínicas refletem a probabilidade da variante causar uma doença. São 5 categorias

  1. Patogênica,
  2. Provavelmente patogênica,
  3. Benigna,
  4. Provavelmente benigna e,
  5. Significado incerto. 

Quanto ao tipo de alteração, temos as seguintes categorias:

 

Variantes de base única (Single Nucleotide Variant, SNV)

As variações de nucleotídeo ou base única (SNV) são alterações de um único par de bases. Envolvem a substituição de um par de base na sequência do DNA, o que pode ter diferentes consequências sobre a proteína codificada.

 

Indels

São inserções ou deleções de uma, ou mais bases na sequência do DNA. Esses tipos de alterações, quando ocorrem dentro de éxons, podem ter diferentes consequências sobre a proteína codificada, incluindo a adição ou exclusão de aminoácidos, ou mesmo a mudança da matriz de leitura do código genético e inclusão de um sinal de parada prematuro da formação da proteína, ou ainda o alongamento dela.

 

Variantes estruturais (Structural Variation, SV)

Variantes estruturais (SV) compreendem uma ampla classe de alterações genômicas, normalmente definidas como alterações de 50 pares de bases ou mais, incluindo deleções, duplicações, inserções, inversões e translocações.

O tamanho da SV não necessariamente está ligado ao seu efeito no funcionamento do organismo. 

Grandes pedaços de cromossomos podem ser movidos de um ponto para o outro (translocações) ou invertidos (inversão), sem efeitos negativos aparentes. Por outro lado, deleções ou adições de múltiplas bases dentro de um gene podem resultar em uma proteína não funcional, com graves consequências para o funcionamento do organismo. 

 

Variações do Número de Cópias (Copy Number Variation, CNV)

As variantes de número de cópias (CNV) são um tipo de SV em que trechos do DNA variam em seu número de cópias (normalmente temos duas cópias, uma paterna e uma materna).

As CNVs podem incluir um ou vários genes, fazendo com que um indivíduo tenha quatro cópias de um gene, em vez das duas habituais, outra pessoa tenha três e outra pessoa cinco.

As CNVs podem resultar em níveis mais elevados ou diminuídos de proteínas sendo produzidas, podendo ou não causar doenças.

Já foi demonstrado que alguns genes e regiões do genoma possuem CNVs sem impacto funcional. Por outro lado, CNVs em genes atuantes no desenvolvimento neuropsicomotor, podem aumentar o risco para distúrbios do neurodesenvolvimento, por exemplo.

 

Alterações Cromossômicas

As alterações (ou anomalias) cromossômicas são variações no número ou na estrutura (forma ou tamanho) dos cromossomos.

O genoma humano é constituído de 46 cromossomos: 2 conjuntos de 22 cromossomos homólogos autossômicos e 2 cromossomos sexuais, X e Y. As alterações cromossômicas numéricas são aquelas que, de alguma forma, afetam esse número.

O número normal do conjunto total de cromossomos (44 autossomos + 2 cromossomos sexuais) é chamado de euploidia

Se todo o conjunto total aumenta é considerado uma poliploidia (triploidia – 69 cromossomos, tetraploidia – 92 cromossomos). 

Se o número de algum cromossomo específico é alterado, chamamos de aneuploidias (ex.: trissomia do cromossomo 21, conhecido como Síndrome de Down).

As alterações cromossômicas estruturais são variações que alteram a estrutura do cromossomo e incluem: deleções, duplicações, inversões, translocações, cromossomo em anel e isocromossomos. 

Mesmo que a estrutura e organização dos cromossomos esteja alterada, se a quantidade de material genético estiver preservada, a alteração é chamada de balanceada ou equilibrada. Se houver partes cromossômicas adicionais ou a menos é chamada de desequilibrada, ou desbalanceada.

 

Além das classificações das variantes, outros termos também são muito frequentes:

Variante de novo

Variante de novo, também chamada de “mutação nova” é uma variante que surgiu em um indivíduo pela primeira vez e não é herdada de um dos pais.

Podem ser causadas por acaso, por falhas no processo de replicação do DNA durante a divisão celular e formação dos gametas, por reparo de erros no processamento do DNA ou devido a eventos mutagênicos, como exposição à radiação e produtos químicos específicos. Como em todas as variantes, as variantes de novo podem ter consequências funcionais e causar doenças. 

 

Variabilidade genética/genômica

A variabilidade genética é todo o conjunto de diferenças entre as sequências de DNA (genoma) dos indivíduos.

O genoma humano possui três bilhões de pares de bases em sua sequência. Sendo que 99.5% dessa sequência é comum entre indivíduos, e os 0.5% restantes faz com que nenhum ser humano seja igual ao outro.

A variabilidade genética é uma parte muito importante da vida. É esse conjunto de variações que permite que os organismos se adaptem a diferentes ambientes e situações adversas, sendo essencial para a sobrevivência das espécies. 

Determinadas variações genéticas podem ser a causa direta de doenças raras (como a Atrofia Muscular Espinhal, AME), podem resultar em uma maior ou menor predisposição para o desenvolvimento de doenças comuns (como diabetes e hipertensão), mas também podem resultar em vantagens adaptativas, ou ainda podem não ter qualquer consequência na saúde. 

 


Quer entender mais sobre termos importantes na genética e genômica? Leia também a primeira e a segunda parte do nosso glossário.