Sequenciamento Sanger: vantagens para a medicina contemporânea

Sequenciamento Sanger: vantagens para a medicina contemporânea

Entenda mais sobre a técnica de sequenciamento Sanger, que possibilitou o sequenciamento do primeiro genoma humano e como ela ainda é importante 20 anos depois.

 

História do Sequenciamento Sanger

A tecnologia de sequenciamento Sanger surgiu na década de 70 e foi o primeiro grande passo para o sequenciamento massivo de DNA, sendo conhecida hoje como sequenciamento de primeira geração. Essa foi a tecnologia que permitiu o lançamento do Projeto Genoma Humano em 1991, que prometia sequenciar o primeiro genoma humano nos 15 anos seguintes.

Em 2001, o Projeto Genoma Humano publicava o rascunho do primeiro genoma humano, 4 anos antes do previsto, graças ao Sanger e ao desenvolvimento de técnicas de sequenciamento massivo em paralelo, também conhecido como Sequenciamento de Nova Geração (NGS), que teve início na década de 1990.

 

Sequenciamento Sanger x Sequenciamento de Nova Geração

A tecnologia NGS é hoje a principal ferramenta utilizada para sequenciamento na área diagnóstica. Com ela é possível sequenciar várias regiões do DNA, e várias amostras, ao mesmo tempo, reduzindo muito o custo da análise por amostra. No entanto, esse tipo de ensaio tem suas limitações, que podem, em muitos casos, ser sanadas pela tecnologia Sanger.

Na imagem abaixo é possível ver que, com NGS, o DNA é quebrado em pequenos fragmentos, que são sequenciados e depois realinhados através de ferramentas de bioinformática, como um grande quebra-cabeças. Isso dificulta analisar regiões homólogas (semelhantes) e repetitivas do DNA por NGS, pois não sabemos onde encaixar esses fragmentos.

Ilustração comparando a análise de regiões homólogas (semelhantes) por sequenciamento de nova geração (NGS) e por sequenciamento Sanger

Figura 1. Comparação entre análises de regiões homólogas por Sequenciamento de Nova Geração (NGS) e por Sequenciamento Sanger.

Esse problema pode ser resolvido sequenciando fragmentos mais longos, que compreendam as regiões flanqueadoras (regiões que cercam esses trechos). Com peças maiores, é mais fácil resolver o quebra-cabeça.

Enquanto o NGS analisa fragmentos de até 300 pares de bases (pb), o sequenciamento Sanger permite analisar fragmentos que chegam a cerca de 800pb, sendo mais indicado para a análise de regiões complexas.

O sequenciamento tipo Sanger utiliza alguns nucleotídeos modificados com fluoróforos (moléculas que emitem luminescência), e resulta em cópias com diferentes tamanhos da sequência do DNA de interesse, mas que se iniciam na mesma posição, como mostrado na figura abaixo.

Os fragmentos são separados por tamanho e as bases finais de cada cópia são identificadas pela fluorescência.

Ilustração de como é feito o sequenciamento sanger, onde os nucleotídeos alterados com fluoróforos identificam a inserção de cada base que compõe a sequência

Figura 2. Sequenciamento Sanger. Os fragmentos sequenciados são identificados por tamanho e pela fluorescência emitida pela última case adicionada. Dessa forma é possível determinar a sequência de nucleotídeos da região de interesse.

 

Dessa forma, o sequenciamento Sanger permite identificar variantes genéticas em sequências mais longas de DNA, sem a necessidade de uma etapa computacional de reconstrução dos trechos sequenciados.

 

Sanger no diagnóstico de doenças causadas por regiões complexas

Um bom exemplo do uso do sequenciamento Sanger na medicina atual é no diagnóstico da Hiperplasia Adrenal Congênita (CAH) resultante da deficiência da enzima 21-hidroxilase.

Essa doença leva à produção excessiva de hormônios andrógenos (masculinos), podendo causar o desenvolvimento de genitália ambígua em pessoas do sexo feminino, além de puberdade precoce em ambos os sexos.

Cerca de 75% dos casos também apresenta deficiência do hormônio aldosterona, que leva à dificuldade de reter água e sais, causando desidratação, baixo volume de sangue circulante (hipovolemia) e pressão baixa (hipotensão).

A CAH com deficiência de 21-hidrogenase é causada por alterações no gene CYP21A2, que possui um pseudogene homólogo, o CYP21A1P. Esse pseudogene é uma região do DNA muito semelhante ao gene CYP21A2, porém não é funcional, ou seja, a partir dele não é possível produzir a enzima 21-hidroxilase.

Durante a formação dos gametas ocorrem alguns eventos de recombinação do DNA, nos quais os pares de cromossomos se recombinam resultando em sequências híbridas daquelas que herdamos dos nossos pais. Durante esse processo, regiões homólogas (CYP21A2 e CYP21A1P, por exemplo) podem ser indevidamente pareadas e, consequentemente, trocadas durante a recombinação.

Como mostrado na figura abaixo, tanto a troca de regiões entre o gene CYP21A2 e o pseudogene CYP21A1P, quanto a união deles (resultado de uma deleção) podem comprometer a produção da 21-hidrogenase. Cerca de 95% das alterações genéticas que levam à CAH são resultantes de recombinações entre as regiões homólogas.

Ilustração dos eventos de recombinação e deleção na região do gene CYP21A2 e do pseudogene CYP21A1P que resultam em Hiperplasia Adrenal Congênita (CAH) com deficiência da enzima 21-hidroxilase.

Figura 3. Ilustração dos eventos de recombinação e deleção na região do gene CYP21A2 e do pseudogene CYP21A1P que resultam em Hiperplasia Adrenal Congênita (CAH) com deficiência da enzima 21-hidroxilase.

O sequenciamento de Sanger é capaz de identificar essas recombinações e atingir uma taxa diagnóstica mais alta que os painéis de NGS, que não conseguem sequenciar toda a região de interesse em uma única sequência. Por isso, Sanger é a metodologia mais indicada para o diagnóstico de CAH com deficiência de 21-hidrogenase.

Na Mendelics o diagnóstico da Hiperplasia Adrenal Congênita resultante da deficiência da enzima 21-hidroxilase é feito por Sanger e MLPA, para a identificação das variantes resultantes de recombinações e das deleções, respectivamente, atingindo uma alta taxa diagnóstica para a doença.

Conheça o exame

 

Consulte sempre seu médico e, se precisar de um exame diagnóstico, entre em contato com a nossa equipe.


Referências

Khan Academy – Sequenciamento de DNA

National Human Genome Research Institute (NHGRI) – DNA Sequencing Costs: Data

National Organization for Rare Disorders – Congenital Adrenal Hyperplasia

Nimkarn S, et al. 21-Hydroxylase-Deficient Congenital Adrenal Hyperplasia. 2002. In: Adam MP, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021.

Pignatelli D., et al. The complexities in genotyping of congenital adrenal hyperplasia: 21-Hydroxylase deficiency. 2019. Frontiers in Endocrinology, vol. 10.

Forrest Gump: um retrato singular da Deficiência Intelectual

Forrest Gump: um retrato singular da Deficiência Intelectual

A Deficiência Intelectual é retratada no filme premiado Forrest Gump

O filme de 1994 conta a história de Forrest Gump, um simpático e modesto cidadão do Alabama que possui deficiência intelectual (DI). O que torna a narrativa tão interessante é que toda a trajetória do personagem é contada por ele mesmo e, por isso, vem com a mesma leveza do personagem, resultando em uma comédia contagiante.

Durante o filme vemos todos os principais marcos da vida de Forrest, que foi particularmente impressionante, principalmente considerando que ele possui DI, condição muitas vezes vista como um impedimento para o sucesso profissional e pessoal.

Forrest mostra que com paciência e dedicação tudo é possível. Ao decorrer da narrativa, Forrest passa por todo tipo de experiência, desde servir o exército americano na Guerra do Vietnã, conhecer o presidente, ser campeão de tênis de mesa, conhecer o presidente (de novo!), atravessar o país correndo, fundar uma das maiores empresas de pesca de camarão e até servir como inspiração para a criação do smiley face.

Além de suas conquistas profissionais, o filme também mostra os marcos da sua vida pessoal. Desde seu relacionamento com a mãe, responsável pela visão leve que ele tem do mundo, às amizades que fez ao longo da vida e até o romance com sua amiga de infância, Jenny.

A forma como a história de Forrest Gump é contada deixa ele em foco e não a sua deficiência, uma ótima forma de mostrar a DI de forma leve, divertida e livre de capacitismo (Preconceito contra pessoas com deficiências). Quem assiste se deleita com a sua vida cheia de grandes acontecimentos e com sua perspectiva única e cativante sobre os eventos que ocorreram nas décadas de 60 e 70.

O filme foi indicado para 13 categorias dos Oscars e ganhou seis delas, incluindo Melhor Filme e Melhor Ator para Tom Hanks no papel de Forrest Gump. 

 

O que é Deficiência Intelectual?

A deficiência Intelectual é caracterizada por um atraso no desenvolvimento intelectual e comprometimento cognitivo que se tornam aparentes antes dos 18 anos, enquanto o cérebro ainda está se desenvolvendo. Pessoas com DI têm dificuldade para aprender e realizar tarefas do dia a dia e interagir com o meio em que vivem. Ou seja, existe um comprometimento cognitivo que prejudica suas habilidades adaptativas como resolver problemas inesperados do cotidiano, conversar com desconhecidos, nutrir relacionamentos, pagar contas, efetuar tarefas de casa, etc.

A deficiência intelectual não é uma doença, sendo definida como um distúrbio do neurodesenvolvimento. 

Pode ser causada por alterações genéticas e fazer ou não parte de uma síndrome (DI sindrômica ou DI não-sindrômica, respectivamente), pode ocorrer devido a fatores ambientais durante a gravidez ou após o nascimento como: desnutrição materna, uso de medicamentos, drogas e/ou álcool, infecções virais, prematuridade, hipóxia, entre outros.

Dentre as condições genéticas associadas à deficiência intelectual, trouxemos as principais e mais conhecidas pela população:

 

Síndrome de Down

É causada por uma alteração genética onde o indivíduo possui três cópias do cromossomo 21 (trissomia), ao invés de duas.

O nível de deficiência intelectual causada pela síndrome é variado, e pode vir acompanhada de distúrbios do comportamento como hiperatividade e depressão.

No Brasil, 1 a cada 700 pessoas possuem Síndrome de Down.

 

Síndrome do X-Frágil

É causada por uma alteração no gene FMR1 que se encontra no cromossomo X. O X é um cromossomo sexual, sendo que mulheres possuem duas cópias e homens somente uma. Ambos os sexos são afetados, mas os homens apresentam sintomas mais acentuados.

A deficiência intelectual causada pela síndrome costuma ser moderada em homens e leve em mulheres, e pode estar acompanhada de dificuldade de socialização e hiperatividade.

A síndrome afeta 1 a cada 4 mil homens e 1 a cada 7 mil mulheres no mundo.

 

Síndrome de Prader-Willi

É causada por alterações genéticas no cromossomo 15 que podem afetar diversos genes e leva à hipotonia muscular, baixo peso e pequena estatura.

A deficiência intelectual causada pela síndrome varia de leve a moderada e pode vir acompanhada de atrasos no desenvolvimento motor e distúrbios alimentares.

A síndrome afeta pelo menos 1 a cada 15.000 pessoas no Brasil e no mundo.

 

Síndrome de Angelman

É causada por alterações genéticas no gene UBE3A, localizado no cromossomo 15, e leva a uma grande variedade de sintomas, sendo os mais comuns o atraso grave no desenvolvimento intelectual e motor, dificuldade ou ausência de fala e risos involuntários.

A deficiência intelectual causada pela síndrome costuma ser grave.

Estima-se que a síndrome afete pelo menos 1 a cada 12.000 pessoas no mundo.

 

Síndrome Williams

É causada por alterações genéticas que afetam diversos genes no cromossomo 7, e leva ao atraso no crescimento e baixa estatura, além de problemas cardíacos e níveis alterados de cálcio em alguns casos.

A deficiência intelectual causada pela síndrome varia de leve a moderada.

A síndrome afeta pelo menos 1 a cada 10.000 pessoas no mundo.

 

Diagnóstico molecular da Deficiência Intelectual

Todas as síndromes descritas, dentre outras, são detectáveis por exames genéticos oferecidos pela Mendelics. Confira a lista completa no nosso site.

Existe uma grande variedade de tipos de deficiência intelectual, com diferentes causas, o que dificulta o diagnóstico. Ao todo a DI afeta cerca de 1 a 3% da população mundial mas, infelizmente, cerca de 50% dos casos permanecem sem diagnóstico. Por isso, várias alternativas para o diagnóstico já estão sendo aplicadas.

O Sequenciamento Completo do Exoma (SCE) elevou a taxa de diagnósticos de 15% para até 68% dos casos (em comparação com as técnicas de cariótipo e microarray). A técnica avalia o exoma, que comporta todas as porções do DNA responsáveis pela produção de proteínas, ou seja, as partes do DNA que estão fortemente relacionadas com a maior parte das doenças genéticas.

A Mendelics é pioneira e líder em Exoma na América Latina e oferece o produto mais completo do mercado. O Exoma Mendelics inclui também a avaliação de CNVs (Variação do Número de Cópias) e DNA mitocondrial, sempre que necessário, sem custos adicionais, rendendo uma taxa de diagnóstico mais alta.

Entenda mais sobre a contribuição do Exoma para o Diagnóstico da deficiência intelectual nesse artigo.

Conheça o Exoma Mendelics


Referências

Instituto Jô Clemente

Federação Brasileira das Associações de Síndrome de Down

National Organization for Rare Disorders – Fragile X Syndrome

National Organization for Rare Disorders – Prader Willi Syndrome

Sociedade Brasileira de Pediatria – Síndrome de Prader Willi

National Organization for Rare Disorders – Angelman Syndrome

National Organization for Rare Disorders – Williams Syndrome

Associação Brasileira da Síndrome de Williams

Ilyas M., Mir A., Efthymiou S. et al. The genetics of intellectual disability: advancing technology and gene editing. F1000Res. 2020 Jan 16;9:F1000 Faculty Rev-22.

Milani D., Ronzoni L., Esposito S. Genetic Advances in Intellectual Disability. J Pediatr Genet. 2015 Sep;4(3):125-7.

Li Y., Anderson L.A., Ginns E.I. et al. Cost Effectiveness of Karyotyping, Chromosomal Microarray Analysis, and Targeted Next-Generation Sequencing of Patients with Unexplained Global Developmental Delay or Intellectual Disability. Mol Diagn Ther. 2018; 22:129–138.

Santos-Cortez R.L.P., Khan V., Khan F.S. et al. Novel candidate genes and variants underlying autosomal recessive neurodevelopmental disorders with intellectual disability. Hum Genet. 2018 Sep;137(9):735-752.

Gilissen C., Hehir-Kwa J., Thung D. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014; 511:344–347.

Você conhece a hemocromatose, a doença do Felipe Neto?

Você conhece a hemocromatose, a doença do Felipe Neto?

O que é Hemocromatose?

Recentemente (18/06), o Youtuber Felipe Neto publicou em suas redes sociais que havia sido diagnosticado com hemocromatose incompleta heterozigótica. Você conhece essa doença?

Hemocromatose se refere a doenças caracterizadas pelo acúmulo de ferro em vários órgãos como o fígado, coração e pâncreas. Os altos níveis de ferro danificam esses órgãos levando ao aparecimento de vários sintomas diferentes.

A forma mais comum de hemocromatose, também conhecida como hemocromatose clássica ou hemocromatose tipo I, afeta cerca de 1 a cada 100 pessoas mundialmente, em especial no norte da Europa.

 

Quais os sinais e sintomas de Hemocromatose?

O aumento dos níveis de ferro ocorre gradativamente por toda a vida, e os sintomas geralmente surgem entre os 40 e 60 anos de idade, sendo que as mulheres começam a ter sintomas, em média, dez anos mais tarde que os homens.

Pacientes com hemocromatose podem apresentar uma ampla gama de sintomas, pois o ferro se acumula e danifica diversos órgãos. Os sintomas mais comuns são:

  • Fadiga
  • Inflamação e dor nas juntas, principalmente nas mãos e joelhos
  • Dor abdominal
  • Perda de peso
  • Mudança da coloração da pele para tons “metálicos” (acinzentado ou cobre)

Se não tratada, a doença pode levar a sintomas mais graves como cirrose, diabetes e falência cardíaca.

 

Quais as causas da hemocromatose?

A hemocromatose clássica é causada por alterações no gene HFE, responsável por codificar a proteína que atua no controle dos níveis de ferro no organismo. Nos pacientes com hemocromatose, essa proteína não funciona corretamente e o corpo absorve mais ferro que o necessário.

As mutações mais comuns do gene HFE são conhecidas como C282Y e H63D. Cerca de 90% dos casos de hemocromatose são resultantes da mutação C282Y.

A hemocromatose tipo 2, também conhecida como hemocromatose juvenil, se manifesta por volta dos 20 anos de idade e é causada por alterações nos genes HJV e HAMP.

A hemocromatose tipo 3 geralmente se manifesta um pouco mais tarde que a do tipo 2, mais ainda antes dos 30 anos, na maioria dos casos. É causada por alterações no gene TFR2.

A hemocromatose tipo 4, também conhecida como doença da ferroportina, se manifesta como a forma clássica, após os 40 anos, e é causada por alterações no gene SLC40A1.

 

Como a hemocromatose é herdada?

A hemocromatose é uma doença de padrão autossômico recessivo, o que significa que é necessário herdar cópias alteradas do gene HFE de ambos os pais para desenvolver a doença.

Quando alguém possui uma cópia saudável e uma cópia alterada de um gene, dizemos que essa pessoa é heterozigota para a alteração nesse gene. Esse é o caso do Felipe Neto.

O Youtuber foi diagnosticado com hemocromatose incompleta heterozigótica. Isso significa que ele tem uma cópia alterada.

Pessoas que herdam somente uma cópia alterada desse gene são consideradas portadoras e podem não desenvolver os sintomas da doença. Os portadores têm risco aumentado de ter filhos com a doença.

Figura representando graficamente como se dá a herança recessiva

Figura 1. Padrão de herança recessiva

 

Como é feito o diagnóstico?

O diagnóstico inicial é feito pela dosagem de ferritina, um exame bioquímico que mede a concentração de ferro disponível no organismo. Caso sejam detectados níveis altos de ferritina, outros exames devem ser feitos para confirmar o diagnóstico.

O exame genético pode ser feito com esse propósito e traz informações mais compreensivas sobre o quadro do paciente, pois identifica quais as mutações que estão causando a doença. Essa informação é muito importante, pois mutações diferentes causam quadros com diferentes severidades.

Um diagnóstico precoce é sempre importante, pois permite que o tratamento seja iniciado o mais cedo possível e evita as consequências mais graves da doença. Isso vale para qualquer doença. 

 

Quais são os tratamentos?

Por ser uma doença genética, não é possível curar a hemocromatose hereditária, mas é possível controlar a doença para evitar os sintomas.

O tratamento vai depender da severidade de cada caso. O objetivo é baixar os níveis de ferro e controlar para que eles permaneçam dentro de intervalos saudáveis.

Para isso, várias medidas podem ser tomadas, desde uma dieta controlada, com pouca ingestão de alimentos ricos em ferro, como carnes e grãos, até o uso de medicamentos e sangria, que funciona como uma doação de sangue, mas esse sangue é descartado.

Pacientes com casos mais graves, que já desenvolveram outras complicações como diabetes e cirrose, precisam de tratamentos específicos para cuidar desses outros problemas.

Mantendo os níveis de ferro dentro de um intervalo saudável, sendo por dieta, terapias medicamentosas ou sangria, o paciente não desenvolve os sintomas e tem uma vida normal.

 

Diagnóstico genético e a Mendelics

É importante ressaltar que exames de diagnóstico só podem ser realizados mediante solicitação e acompanhamento médico. Por isso converse com o seu médico!

Na Mendelics possuímos o Painel de Hemocromatoses, que analisa o gene HFE, e as mutações C282Y e H63D, além de outros quatro genes (HAMP, HJV, SLC40A1, TFR2), que podem causar os outros tipos de hemocromatose.

Quer saber mais sobre testes genéticos para diagnóstico das hemocromatoses? Deixe sua pergunta nos comentários abaixo ou entre em contato com a nossa equipe pelo telefone (11) 5096-6001 ou através do nosso site.


Referências

https://twitter.com/felipeneto/status/1405955892655366146

https://rarediseases.org/rare-diseases/classic-hereditary-hemochromatosis/

https://medlineplus.gov/genetics/condition/hereditary-hemochromatosis/

https://www.niddk.nih.gov/health-information/liver-disease/hemochromatosis/symptoms-causes

https://www.msdmanuals.com/pt/casa/dist%C3%BArbios-do-sangue/sobrecarga-de-ferro/hemocromatose

Agência Nacional de Saúde Suplementar (ANS)

Agência Nacional de Saúde Suplementar (ANS)

Qual a importância da ANS para o diagnóstico genético?

A ANS (Agência Nacional de Saúde Suplementar) é uma agência reguladora, vinculada ao Ministério da Saúde brasileiro, que normatiza os serviços de saúde suplementar oferecidos no país.

Ou seja, a ANS é responsável por regulamentar o guia de exames que devem ser cobertos pelos planos de saúde, além de propor quais técnicas devem ser utilizadas e quais os requisitos mínimos de qualidade dos resultados.

 

Missão da ANS

Promover a defesa do interesse público na assistência suplementar à saúde, regular as operadoras setoriais – inclusive quanto às suas relações com prestadores e consumidores – e contribuir para o desenvolvimento das ações de saúde no país. 

Assim, a ANS garante que as operadoras forneçam tudo aquilo que é considerado essencial para o monitoramento e manutenção da saúde dos conveniados.

 

Diretrizes da ANS para diagnóstico genético por NGS

As diretrizes estabelecidas para os testes de diagnóstico genético por Sequenciamento de Nova Geração (NGS), são baseadas em diretrizes internacionais publicadas pela EuroGentest, um projeto europeu que visa padronizar o diagnóstico e aconselhamento genético (1).

Seguindo as recomendações da EuroGentest, a ANS determina quais genes devem ser analisados para cada tipo de diagnóstico (genes principais) (2).

O que deve ser analisado em cada gene:

  • Todos os seus éxons (regiões do gene que serão traduzidas em proteína). 
  • Pelo menos seis bases dos íntrons e regiões regulatórias adjacentes.
  • Cada uma dessas regiões deve ser lida pelo menos 20 vezes durante o sequenciamento (cobertura).
Imagem representando as regiões analisadas de um gene no diagnóstico genético. Comparação entre as especificações da ANS e a análise da Mendelics.

Regiões analisadas de um gene no diagnóstico genético.

 

As diretrizes também permitem que outros genes de interesse para o diagnóstico sejam incluídos nos painéis, assim os testes genéticos podem acompanhar os avanços da ciência.

Muitos dos testes de diagnóstico genético da Mendelics analisam genes extras, além dos determinados pela ANS. Com isso, a Mendelics cumpre os padrões de qualidade exigidos pela agência, porém com uma capacidade de diagnóstico superior aos painéis comuns, já que analisa mais regiões.

 

Exemplos de diferenças entre a lista de genes listados pela ANS e analisados pela Mendelics:

Exemplos de diferenças entre a lista de genes listados pela ANS e os analisados pela Mendelics

A Mendelics foi pioneira no diagnóstico genético por NGS na América Latina e possui acreditações nacionais e internacionais de qualidade que mostram que os seus resultados são seguros e confiáveis.

Conheça todo o portfólio de exames genéticos no site da Mendelics.

 


Referências

(1) G. Matthijs et al., “Guidelines for diagnostic next-generation sequencing”, European Journal of Human Genetics, vol. 24, no. 1, pp. 2–5, Oct. 2015.

(2) O que é o Rol de Procedimentos e Evento em Saúde. Acesso em 14 de abril de 2021.

Entenda as técnicas de NGS Targeted Sequencing

Entenda as técnicas de NGS Targeted Sequencing

O que é NGS targeted sequencing


As técnicas de sequenciamento de nova geração (do inglês Next Generation Sequencing, NGS) desenvolvidas nas últimas décadas permitiram o sequenciamento de genomas completos de vários indivíduos simultaneamente, diminuindo de maneira significativa o custo e tempo das análises. A tecnologia de target sequencing (sequenciamento alvo), permite selecionar regiões específicas do genoma (regiões alvo, geralmente genes específicos,  que vão compor uma biblioteca), tornando as análises ainda mais rápidas e menos custosas.

Quanto a estratégia utilizada para seleção das regiões de interesse (sequências alvo), o NGS por ser dividido em dois tipos: Sequenciamento baseado em Amplicons (Amplicon-based Sequencing – sequenciamento por amplificação em emulsão) e Sequenciamento por Hibridização e Captura (Hybridization-based Capture Sequencing).

Entenda mais sobre NGS nesse artigo.

Sequenciamento por Amplificação

Nessa técnica, as regiões do DNA que serão analisadas são selecionadas utilizando primers específicos. Esses primers são pequenas sequências de bases que se complementam com as regiões de interesse no DNA. Os fragmentos selecionados são, então, amplificados por PCR para aumentar o número de cópias na biblioteca e facilitar a detecção. Chamamos essas cópias de amplicons.

Os primers utilizados, além de selecionar as regiões do DNA que serão analisadas, também adicionam adaptadores nas extremidades dos amplicons. Esses adaptadores contém os índices (sequência curta de bases que identificam cada amostra), e sequências complementares aos primers da flowcell (placa onde ocorre o sequenciamento), utilizados no sequenciamento (Figura 1).

 

Figura 1: A técnica de Sequenciamento por Amplificação resulta em uma cobertura pouco uniforme e perdas de variantes por dropout.

 

Apesar de ser uma técnica mais simples e barata existem algumas desvantagens:

  1. Cada região de interesse necessita de um par de primers específico, o que limita a quantidade de regiões que podem ser analisadas simultaneamente por esse tipo de técnica (1,2).
  2. A ligação do primer à fita de DNA ocorre em uma temperatura específica que pode variar para cada par de primers. Por isso, alguns amplicons vão ser multiplicados com mais facilidade e eficiência que outros, resultando em coberturas (número de vezes que uma região é representada) desiguais das diferentes regiões de interesse (1,2).
  3. Os primers precisam ser complementares à fita de DNA onde vão se ligar. A presença de variações (mutações) pode impedir a amplificação (exclusão alélica, ou dropout, em inglês). Eventos dropout podem resultar tanto na perda da cobertura, quando nem a cópia materna nem a paterna são amplificadas, quanto na genotipagem equivocada de homozigotos (indivíduos com duas cópias iguais de um ponto de variação), quando somente uma cópia é sequenciada, diminuindo a acurácia da técnica (1,2).

 

Sequenciamento por Hibridização e Captura

Nessa técnica o DNA é fragmentado em pedaços menores que se sobrepõem. Os fragmentos contendo as regiões de interesse são ligados aos adaptadores que possuem os índices de identificação das amostras e as sequências complementares aos primers da flowcell. Esses fragmentos são, então, hibridizados (ligados) a sondas que possuem uma molécula de biotina aderida à elas, e é utilizada para capturar os fragmentos de interesse.

O Sequenciamento por Hibridização e Captura não faz uso de amplicons (Figura 2) para enriquecer a biblioteca com as regiões de interesse, dessa forma, os problemas encontrados nas análises de Sequenciamento por Amplificação são sanados.

  1. O Sequenciamento por Hibridização e Captura consegue capturar todas as regiões de interesse (não ocorre exclusão alélica), apresentando maior sensibilidade e acurácia (1,2).
  2. Apresenta cobertura mais homogênea dos fragmentos sequenciados, além de possibilitar o sequenciamento de uma quantidade virtualmente infinita de regiões de interesse (1,2,3)

 

ngs targeted sequencing sequenciamento por hibridização

Figura 2: A Técnica de Sequenciamento por Hibridização e Captura leva à uma cobertura mais homogênea das regiões de interesse.

 

Assim, apesar da técnica de Sequenciamento por Hibridização e Captura ser mais complexa e poder apresentar custo mais elevado, ela permite uma análise mais sensível e acurada dos genes de interesse. Por isso, a Mendelics utiliza kits de preparo de bibliotecas de Sequenciamento por Hibridização e Captura para as análises e diagnóstico genético.

 


Referências

  1. G. Matthijs et al., “Guidelines for diagnostic next-generation sequencing”, European Journal of Human Genetics, vol. 24, no. 1, pp. 2–5, Oct. 2015, doi: 10.1038/ejhg.2015.226.
  2. E. Samorodnitsky et al., “Evaluation of hybridization capture versus Amplicon‐Based methods for Whole‐Exome sequencing”, Human Mutation, vol. 36, no. 9, pp. 903–914, Jul. 2015, doi: 10.1002/humu.22825.
  3. S. S. Hung et al., “Assessment of capture and amplicon-based approaches for the development of a targeted next-generation sequencing pipeline to personalize lymphoma management,” The Journal of Molecular Diagnostics, vol. 20, no. 2, pp. 203–214, Mar. 2018, doi: 10.1016/j.jmoldx.2017.11.010.