Entenda a doença do filho da Jornalista Larissa Carvalho do vídeo do TEDxPUCMinas

Entenda a doença do filho da Jornalista Larissa Carvalho do vídeo do TEDxPUCMinas

Na última semana um vídeo publicado pelo TEDxPUCMinas 2020 repercutiu nas redes sociais. No vídeo a jornalista Larissa Carvalho contou a jornada em busca do diagnóstico do seu filho, Théo, de 4 anos, que nos seus primeiros meses de vida teve paralisia cerebral.

Após muito tempo buscando entender porque seu filho teve paralisia cerebral, finalmente Larissa obteve o diagnóstico final: seu filho Théo possui uma doença genética recessiva chamada Acidúria Glutárica tipo I. Um erro inato do metabolismo que possui tratamento e que quanto mais cedo for diagnosticado e tratado, melhor a qualidade de vida e prognóstico da criança.

No vídeo, Larissa descreve o susto que sofreu ao receber a notícia da doença e, principalmente, da frustração ao saber que a doença tem tratamento eficiente quando diagnosticada precocemente. Por isso, passou a se dedicar em divulgar para o maior número de pessoas os benefícios da ampliação do Teste do Pezinho básico e da importância da triagem neonatal.

Acidúria Glutárica tipo I: A doença do Théo

A Acidúria Glutárica tipo I (AG1), conhecida também como Acidemia Glutárica tipo 1, é uma doença genética rara do grupo de erros inatos do metabolismo (EIM) que é causada pela deficiência de uma enzima da mitocôndria chamada glutaril-CoA desidrogenase (GCDH).

Normalmente, o organismo é capaz de metabolizar a proteína dos alimentos (presente, por exemplo, no leite, na carne bovina e em peixes) em aminoácidos. A enzima GCDH é responsável por realizar o metabolismo dos aminoácidos triptofano, lisina e hidroxilisina, ‘quebrando-os’ em uma substância chamada ácido glutárico, que é convertida em energia. 

Em bebês com AG1, a enzima GCDH está ausente ou não funciona (deficiente), tornando esses bebês incapazes de metabolizar esses aminoácidos e permitindo que haja um acúmulo deles e de outras substâncias nocivas ao organismo (ácido glutárico, 3-OH-glutárico e glutacônico). Essas substâncias acumuladas começam a danificar uma parte do cérebro chamado gânglio basal que controla o movimento motor.

 

Qual a causa da acidúria glutárica tipo I?

A AG1 é causada por alterações genéticas (mutações) nas duas cópias do gene GCDH, que é responsável por produzir a enzima GCDH. 

É uma doença genética com padrão de herança recessivo, por isso, para desenvolvê-la é preciso herdar o gene GCDH “defeituoso” da mãe e do pai. 

Quando o bebê recebe apenas um gene GCDH “defeituoso” (do pai ou da mãe), é considerado um “portador”. Portadores (de alterações genéticas que causam doenças) não têm os sintomas da doença, porém, podem transmitir o seu gene alterado para os seus filhos.  

Por isso, muitas pessoas não sabem que são portadoras de uma alteração no gene GCDH e só descobrem quando tem um filho com a doença, como no caso da jornalista Larissa Matos e seu marido.

 

Quais são os principais sintomas da acidúria glutárica tipo I?

A maioria dos bebês com AG1 nascem aparentemente saudáveis, mas na maioria dos casos, os sinais e sintomas começam a se manifestar na primeira infância. Em um pequeno número de casos, os sintomas se iniciam mais tarde: após os seis anos de idade. 

É frequente que bebês com AG1 apresentarem macrocefalia (circunferência da cabeça maior do que o esperado para a idade) ao nascimento. Por isso, a doença precisa ser investigada em recém-nascidos com macrocefalia.

Quando o AG1 não é tratado precocemente, em geral, bebês entre 3 meses e 3 anos de idade apresentam crise encefalopática aguda, caracterizada por diminuição do tônus muscular (hipotonia), perda de habilidades motoras, dificuldade de alimentação e, às vezes, convulsões. O controle do movimento das mãos, braços, pés, pernas, cabeça e pescoço pode ficar muito difícil e podem ocorrer espasmos musculares. 

Essas crises ocorrem geralmente devido a uma infecção febril, jejum ou outro fator de estresse para o corpo, como vacinas ou cirurgias. E resultam em lesões cerebrais graves e irreversíveis que podem levar a morte.

 

Como a doença pode ser identificada?

A AG1 não faz parte do Programa Nacional de Triagem Neonatal do SUS, que rastreia apenas seis doenças (fenilcetonúria, hipotireoidismo congênito, anemia falciforme, fibrose cística, hiperplasia adrenal congênita e deficiência de biotinidase). A doença é triada em algumas versões ampliadas do Teste do Pezinho que usam espectrometria de massa em tandem (MS/MS). 

A doença também pode ser identificada em um exame genético, um tipo de teste que analisa diretamente o DNA para identificar mutações no gene GCDH.  Esse é o teste mais preciso e confiável para identificar a doença, tanto em bebês assintomáticos (teste de triagem) quanto em pacientes de qualquer idade que tenham algum sintoma da doença (teste de diagnóstico).  

A realização do teste genético também é altamente recomendado para pessoas que tenham histórico familiar da doença.  

 

Como é feito o tratamento da acidúria glutárica tipo I?

O tratamento da AG1 tem como objetivo reduzir a produção das substâncias tóxicas ao organismo através da restrição da ingestão de lisina e triptofano. É relativamente simples e consiste em uma dieta hipoproteica com baixo teor de lisina e com suplementação oral de carnitina.

Porém, após o início das sequelas neurológicas, o tratamento nutricional é pouco eficaz. 

 

Conheça o Teste da Bochechinha

Foi pensando no diagnóstico precoce de doenças raras que possuem tratamento disponível, como a do Théo, que a Mendelics desenvolveu o teste de triagem neonatal genética mais completo do Brasil: o Teste da Bochechinha.

O Teste da Bochechinha é uma triagem genética que analisa diretamente o DNA em busca de alterações genéticas que predispõem o recém-nascido a desenvolver doença(s) tratáveis de manifestação ainda na infância.

Centenas de doenças genéticas raras que possuem tratamento não são triadas pelo Teste do Pezinho, mas são identificadas através de uma análise genética. 

O Teste da Bochechinha:

  • Analisa o DNA do bebê pela técnica de Sequenciamento de Nova Geração (NGS)
  • É capaz de triar mais de 310 doenças tratáveis
  • Contempla doenças e genes escolhidos pela equipe médica da Mendelics com base na literatura médica e em bancos de dados genéticos 
  • A coleta é rápida e indolor e pode ser feita pelos pais do bebê

 

Por que o Teste da Bochechinha é importante para o diagnóstico precoce da acidúria glutárica tipo I?

O AG1 é uma doença grave e progressiva que prejudica a qualidade de vida e futuro do bebê. Porém, com diagnóstico e tratamento desde o nascimento, o desenvolvimento dos sintomas graves é totalmente evitável e controlável.

O AG1 ainda não faz parte do Teste do Pezinho do SUS e só pode ser detectado precocemente em exames laboratoriais da rede privada. Por isso, a AG1 é uma das mais de 310 doenças investigadas no Teste da Bochechinha

O Bochechinha complementa o Teste do Pezinho básico e o expandido/ampliado. Centenas de doenças genéticas raras que possuem tratamento não são triadas pelo Teste do Pezinho, mas são identificadas através de uma análise genética. 

Através da moderna técnica de sequenciamento de nova geração (NGS), o DNA do bebê é analisado a fim de buscar alterações no GCDH e em centenas de outros genes. 

Bebês com alto risco de desenvolver AG1, identificados em nosso teste, podem iniciar precocemente o acompanhamento médico e tratamento da doença. Quanto mais cedo diagnóstico e o início do tratamento, maior a qualidade de vida do paciente.

 

Meu filho tem suspeita de acidúria glutárica tipo I, posso fazer o Teste da Bochechinha para confirmar o diagnóstico?

O Teste da Bochechinha é um teste de triagem neonatal.

Quando a criança (ou pessoa de qualquer idade) tem algum sintoma de AG1 ou o recém-nascido teve o resultado do teste do pezinho ampliado/expandido positivo para AG1, recomenda-se realizar um exame genético de diagnóstico para confirmar a suspeita. 

A Mendelics oferece exames para o diagnóstico de AG1, incluindo o Painel de Doenças Tratáveis e o Painel de Distonias. Converse com seu médico!

Quer saber mais sobre a Acidúria glutárica tipo I e outras doenças raras tratáveis? Deixe sua pergunta nos comentários abaixo ou entre em contato com a nossa equipe pelo telefone (11) 5096-6001 ou através do nosso site.

 


Referências

  1. https://www.youtube.com/watch?v=ElqZ7-FXHdw
  2. https://rarediseases.org/rare-diseases/glutaricaciduria-i/
  3. https://www.ncbi.nlm.nih.gov/books/NBK546575/
  4. https://www.spdm.org.pt/media/1285/consensos-spp_spdm_38-5-acid%C3%BAria-glut%C3%A1rica-tipo-i.pdf
  5. https://medlineplus.gov/genetics/condition/glutaric-acidemia-type-i/#resources
ENTENDA AS DIFERENÇAS ENTRE OS TESTES PARA O NOVO CORONAVÍRUS (COVID-19)

ENTENDA AS DIFERENÇAS ENTRE OS TESTES PARA O NOVO CORONAVÍRUS (COVID-19)

VOCÊ SABE AS DIFERENÇAS ENTRE OS TESTES DO COVID-19?

Na China, em dezembro de 2019, foram identificados vários casos de pneumonia de causa desconhecida, relacionados a um mercado de frutos-do-mar na cidade de Wuhan. Essa nova doença causada por um coronavírus, SARS-CoV-2,  recebeu o nome COVID-19. 

Apenas algumas semanas após a identificação do primeiro caso da COVID-19,  vários tipos de testes foram desenvolvidos e disponibilizados por laboratórios de todo o mundo (1). 

Entenda mais sobre os testes para o novo coronavírus (COVID-19) e conheça o novo teste molecular  #PARECOVID,  que está solucionando os obstáculos da testagem no Brasil.

 

1. TESTES DE ANTICORPO

Os testes de anticorpo, popularmente conhecidos como “sorológicos”, analisam a resposta do organismo a um agente infeccioso, e nesse caso, identificam anticorpos IgA, IgM e IgG que o corpo produz para combater o SARS-CoV-2

Devido ao tempo que o corpo demora para produzir anticorpos contra uma infecção (janela imunológica), os testes para COVID-19 conseguem detectar anticorpos entre uma a três semanas após o início dos sintomas, mas esse tempo pode variar (2).

Os testes de anticorpos não detectam a doença no início da infecção (fase aguda), portanto, não é recomendado o seu uso para diagnóstico (2).  

Esses testes servem, principalmente, para saber se o paciente já teve a doença no passado e para estudos epidemiológicos populacionais. Até o momento não há evidências do tempo em que anticorpos para o SARS-CoV-2 persistem no organismo após a infecção.

 

2. TESTES DE ANTÍGENOS

Os testes de antígenos identificam fragmentos do vírus, como as proteínas da cápsula viral, no organismo do paciente.

Embora este teste possa detectar o vírus no organismo já no início da infecção, a baixa sensibilidade e especificidade da maioria dos testes disponíveis no mercado tem limitado a sua utilização (3).

 

3. TESTES MOLECULARES

Os testes moleculares ficaram conhecidos popularmente como testes de “PCR”.

O “PCR” (reação em cadeia de polimerase) é uma técnica de biologia molecular capaz de produzir milhares ou até milhões de cópias de um segmento de DNA ou RNA, em um processo conhecido como amplificação

Embora existam importantes diferenças, a depender da técnica utilizada (RT-LAMP, RT-PCR, Sequenciamento), os testes moleculares identificam segmentos específicos do genoma do vírus SARS-CoV-2 na amostra do paciente infectado, através de diferentes estratégias de amplificação.  

Estes testes informam se o indivíduo está com a doença já nos primeiros dias após o início da infecção (fase aguda da doença), sendo fundamentais para o isolamento precoce dos infectados. 

Por outro lado, o teste molecular não é capaz de identificar se a pessoa já teve a doença no passado, já que a sensibilidade é reduzida após a fase de infecção aguda devido à diminuição do vírus e do seu RNA no organismo.

 

TESTE DE RT-PCR

O teste molecular mais utilizado no mundo é o RT-PCR (Reação em cadeia da polimerase com transcriptase reversa) (3). 

Após o RNA do vírus ser transformado em DNA, processo conhecido como transcrição reversa (RT), sequências específicas do vírus são amplificadas. Caso haja, de fato, RNA do SARS-CoV-2 na amostra, sondas irão detectar a sua presença e emitir um sinal de resultado positivo. 

Apesar de ser um teste sensível e específico, problemas de falta de suprimento de reagentes, devido a enorme demanda mundial, e da quantidade insuficientes de equipamento de PCR em tempo real no Brasil, inviabilizaram desde o início da pandemia a aplicação desse tipo de teste em larga escala e a entrega de resultado em prazos curtos. Por isso, há um importante obstáculo para testagem de COVID-19 por RT-PCR.

Outro grande problema é que RT-PCR é feito a partir da coleta de swab nasofaríngeo, no qual um cotonete é introduzido na garganta ou no nariz do paciente. 

Além do desconforto que a coleta causa nos pacientes, há também o risco de contaminação para os profissionais de saúde. Os kits de coleta de swab também estão em falta no mercado, o que tem contribuído para a limitação da capacidade de testagem no Brasil.

 

TESTE DE SEQUENCIAMENTO 

Em janeiro de 2020 foi publicado o primeiro estudo de sequenciamento do genoma do vírus. O estudo mostrou que a COVID-19 era causada por um vírus de RNA de fita única, com um tamanho de genoma de 29.903 bases (por comparação, o genoma humano tem 3 bilhões de bases) e que pertencia a família dos coronavírus (CoV) (7;8). 

Desde então vários pesquisadores ao redor do mundo conduzem estudos que analisam o genoma do vírus, utilizando principalmente estratégias de sequenciamento (Sanger, Sequenciamento de Nova Geração e Nanopore). 

Até o momento, no mundo todo, já foram sequenciados mais de 66.000 genomas de SARS-CoV-2 e os dados são disponibilizados nos bancos de dados públicos, como o Global Initiative on Sharing All Influenza Data (GISAID) (9).

Os dados serão fundamentais para compreendermos a origem do vírus, identificar novas mutações em seu genoma, e também para o desenvolvimento de vacinas e prevenção de novas pandemias.

Assim como testes de RT-PCR e RT-LAMP, um teste de sequenciamento do vírus pode identificar pessoas infectadas logo no início da infecção. Mas até o momento essa estratégia vem sendo pouco utilizada pelos laboratórios clínicos devido, principalmente, ao alto custo desse tipo de testagem.

 

TESTE DE RT-LAMP  (#PARECOVID)

O RT-LAMP (amplificação isotérmica mediada  por  loop  com  transcriptase  reversa), é uma técnica molecular já amplamente utilizada para o diagnóstico de várias doenças infecciosas como Dengue, Chikungunya, Hepatite A e Zika (4;5). 

Em junho a Mendelics disponibilizou um teste de RT-LAMP específico para COVID-19. O teste recebeu o nome de #PARECOVID (6).

Assim como o RT-PCR, o RT-LAMP, inclui uma etapa de transcrição reversa (RT), na qual o RNA é transformado em DNA. Em seguida, regiões específicas do vírus são amplificadas milhares de vezes, em temperatura fixa, por cerca de uma hora.

O teste de RT-LAMP, que tem especificidade superior a 99% e sensibilidade equivalente ao RT-PCR, de acordo com os dados de validação feito em parceria com o hospital Sírio-Libanês, é realizado diretamente na saliva do paciente. O tempo máximo de entrega dos resultados são 24 horas

Além do protocolo ser mais simples e rápido do que o RT-PCR, o RT-LAMP não requer o uso de aparelhos laboratoriais complexos, como termociclador em tempo real ou de reagentes em falta na pandemia. 

O #PARECOVID é o teste molecular com a maior capacidade de testagem desenvolvido até o momento no Brasil.  Lançado há poucas semanas, o #PARECOVID já vem sendo utilizado por muitas empresas em seus planos de retorno seguro ao trabalho. Por enquanto, o teste é disponibilizado apenas para empresas.

 

Tipos de Testes para o novo coronavírus COVID-19 antigeno anticorpo sequenciamento RT LAMP

(clique na imagem para ampliar)

 

Quer saber mais? Deixe sua pergunta nos comentários abaixo ou acesse a página #PARECOVID em nosso site.

Referências:

(1) Acurácia dos testes diagnósticos registrados na ANVISA para a COVID-19. Maio/2020. Departamento de Gestão e Incorporação de Tecnologias e Inovação em Saúde – DGITIS/SCTIE

(2) Centers for Disease Control and Prevention (CDC). Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html. Acessado em 15/07/2020. 

(3) NOTA TÉCNICA COVID-19 N° 06/2020 – GEVS/SESA/ES. Avaliação técnica e aplicabilidade dos testes diagnósticos laboratoriais para COVID – 19.

(4) Notomi T et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.

(5) Wang X, Yin F, Bi Y, et al. Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification. J Virol Methods. 2016;238:86‐93.4

(6) #PARECOVID. Disponível: https://www.mendelics.com/parecovid/

(7) Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). 

(8) Zhu N, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/NEJMoa2001017

(9) Disponível em https://www.gisaid.org/. Acessado em 16/07.

ENTENDA AS DIFERENÇAS ENTRE OS TESTES PARA O NOVO CORONAVÍRUS (COVID-19)

Variações genéticas, sistema ABO e COVID-19

Variações no nosso DNA nos tornam mais susceptíveis à infecção pelo SARS-COV-2?

Estudo sugere potencial associação entre grupo sanguíneo ABO e gravidade de COVID-19

Um dos maiores desafios na atual epidemia de COVID-19 é compreender a grande variabilidade de sintomas associados a infecção por SARS-CoV-2, o vírus que causa a doença. Embora, a maioria das pessoas permaneça assintomática ou desenvolva apenas sintomas leves ou moderados, 4.9% a 11.5% dos infectados  podem ter formas graves e/ou letais da doença (1). 

Há muito tempo já sabemos que a susceptibilidade a patógenos pode ser influenciada por variações no nosso DNA. O melhor exemplo é a mutação “delta-32” no gene CCR5 que confere, a seus portadores, resistência ao HIV quando presente em duas cópias. Pesquisadores do mundo todo se perguntam se situação similar pode ocorrer com a COVID-19

Desde o início da pandemia vários pesquisadores ao redor do mundo conduzem estudos que analisam o DNA de pacientes que foram infectados com o vírus para identificar fatores genéticos que possam explicar a susceptibilidade a infecção e a gravidade da doença. Essas descobertas serão importantes para identificar pacientes com maior ou menor risco, e também podem contribuir para tratamentos mais eficientes e desenvolvimento de vacinas. 

 

Você conhece a COVID-19 Host Genetics Initiative?

 

Nesse contexto a colaboração internacional é fundamental. Um exemplo é o COVID-19 Host Genetics Initiative, um grande esforço de pesquisadores do mundo todo que compartilham resultados de estudos de análises genéticas de pacientes infectados por COVID-19 (2). Os resultados são disponibilizados no site da iniciativa e podem ser acessados por toda a comunidade científica (3). 

No início da pandemia especulava-se que existia relação entre variantes no gene ACE2 e a susceptibilidade à doença. O SARS-CoV-2 usa o receptor de ACE2 para entrar nas células do hospedeiro. Mas até o momento não há dados que confirmem qualquer associação com ACE2. Por outro lado, estudos  sugerem uma possível associação da doença com grupo sanguíneo ABO e outras regiões do nosso genoma. 

 

Estudo sugere potencial associação entre grupo sanguíneo ABO e gravidade de COVID-19

 

Um estudo genético publicado no mês de junho no New England Journal of Medicine (NEJM) sugere um potencial envolvimento do sistema de grupos sanguíneos ABO na COVID-19 (4). Nesse estudo, cientistas usaram uma estratégia chamada GWAS (genome wide association study) para analisar regiões específicas do genoma de 1980 pacientes com COVID-19 e compará-las com o genoma de pessoas saudáveis (grupo controle).

Os pacientes com COVID-19 apresentavam quadros respiratórios graves e estavam internados em hospitais italianos e espanhóis. Os resultados do estudo sugerem uma possível associação entre o grupo sanguíneo A e maior risco de desenvolver quadros mais graves da doença. Os resultados também sugerem um possível efeito protetor do grupo O em comparação aos outros grupos sanguíneos. Outro estudo chinês publicado anteriormente também havia identificado uma possível relação entre grupo ABO e COVID-19 (5).

É importante ressaltar que o artigo do NEJM é apenas um estudo preliminar e que mais estudos com um número maior de pacientes precisam ser publicados para confirmar uma possível associação entre grupos sanguíneos e risco de formas mais graves de COVID-19. 

O estudo também identificou uma segunda região do genoma, no cromossomo 3 (3p21.31), que também parece estar associada a quadros graves da doença e que já tinha sido previamente identificada também no COVID-19 Host Genetics Initiative. Seis genes estão localizados nessa região: SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 e XCR1. 

Este estudo do NEJM não identificou associação com complexo HLA, região do genoma importante para outras infecções virais. 

Referências

(1) Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — United States, February 12–March 16, 2020. MMWR Morb Mortal Wkly Rep 2020;69:343-346

(2) COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum Genet 2020;28:715-718

(3)  https://www.covid19hg.org/

(4) Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020.

(5) Wu Y, Feng Z, Li P, Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. Clin Chim Acta. 2020;509:220-223.