The Bold Type e o Câncer de Mama

The Bold Type e o Câncer de Mama

A jornada de uma portadora de mutação nos genes BRCA1 e BRCA2

 

A série The Bold Type, disponível na Netflix, conta as histórias de três amigas, Jane, Sutton e Kat, que trabalham em uma grande e famosa revista de moda, a Scarlet.

Logo na primeira temporada, a série já começa a destrinchar a relação de Jane com o câncer de mama. A personagem, uma das redatoras da Scarlet, é incumbida de escrever um artigo sobre testes genéticos para detecção de mutações que aumentam o risco de desenvolver a doença.

Fica visível que Jane não se sente confortável com a tarefa. Esse desconforto se torna ainda mais aparente quando ela entrevista uma médica que incentiva mulheres com histórico familiar de câncer de mama a se testarem, mesmo que muito jovens, o que Jane parece achar um exagero.

Questionada sobre seu histórico familiar, Jane revela à médica que sua mãe era portadora de uma mutação nos genes BRCA (BReast CAncer gene) e morreu muito jovem, aos 32 anos de idade, lutando contra o câncer de mama. Nesse momento entendemos o motivo da relutância da personagem com o teste que poderia revelar se ela também possui a mutação.

Mulheres portadoras de mutações nos genes BRCA têm risco aumentado de desenvolver câncer de mama. Mutações no gene BRCA1 aumentam o risco para até 87%, enquanto mutações no gene BRCA2 aumentam o risco para até 88%. Essas mutações também aumentam o risco de desenvolver câncer de ovário.

Outubro Rosa - A descoberta do gene BRCA1

A ansiedade da personagem sobre o assunto aumenta quando ela vê a campanha da própria Scarlet para o Outubro Rosa. Assim como muitas outras empresas, a revista optou por falar de prevenção de forma leve, alegre até, sem considerar a dificuldade e angústia que acompanham o diagnóstico e tratamento do câncer, algo que Jane conhece bem.

Falar sobre a realidade de pacientes com câncer de mama é delicado, e deve ser feito com cuidado e respeito. Por isso, Jane resolve superar o seu medo e falar da sua história no artigo para a Scarlet. E o primeiro passo dela foi fazer o teste para câncer hereditário.

O resultado do teste foi positivo. Jane herdou a mutação da mãe.

A personagem precisa agora lidar com essa informação e com os próximos passos e decisões que precisa tomar. Felizmente, Jane possui uma boa rede de apoio que a ajudou a superar esse momento. Além de uma médica muito competente, que explicou muito bem o que o resultado significava e quais as medidas preventivas que ela poderia tomar.

Somado aos autoexames e exames preventivos periódicos, como mamografias e ultrassons, Jane eventualmente opta por uma dupla mastectomia: a retirada das duas mamas. Ela toma a decisão depois de encontrar um nódulo em uma das mamas. Apesar dos exames indicarem que não era maligno, a preocupação foi suficiente para que ela decidisse operar.

Apesar de ser pouco discutida, a mastectomia é uma das formas mais efetivas de prevenir o câncer de mama em pessoas com alto risco. O assunto ficou em evidência em 2013, quando a atriz americana Angelina Jolie anunciou que tinha passado pela cirurgia depois de testar positivo para uma mutação no BRCA1.

A dupla mastectomia reduz o risco de desenvolver câncer de mama em 95% em mulheres dentro do grupo de risco, como Jane e Angelina Jolie. E a salpingo-ooforectomia (remoção dos ovários e trompas) preventiva reduz o risco de câncer de mama em 50%, e de câncer de ovário em 90%.

Outubro Rosa - Efeito Angelina Jolie - eficácia das cirurgias profiláticas para redução do risco de câncer de mama

Histórias reais de pacientes, sobreviventes e portadores de alto risco são muito importantes para as campanhas de conscientização. Depois que a atriz Angelina Jolie se pronunciou, o número de exames e cirurgias preventivas aumentou muito. Esse aumento foi chamado de “Efeito Angelina Jolie” , e mostra que exemplos reais podem contribuir muito na conscientização e prevenção do câncer de mama.

Katie Stevens, que interpreta Jane na série The Bold Type, também compartilhou sua experiência. A atriz, assim como sua personagem, encontrou um nódulo em uma das mamas durante um autoexame. Felizmente, o tumor foi diagnosticado como benigno. Nas redes sociais, ela fala sobre a importância das mulheres fazerem o autoexame e exames preventivos regulares.

A série The Bold Type aborda o câncer de mama de um ângulo incomum. Jane retrata a história de muitas mulheres com histórico familiar da doença e que precisam lidar com decisões difíceis sobre saúde e prevenção, mesmo quando ainda muito jovens.

Mostra também o impacto que as campanhas de conscientização têm na população, e o cuidado que deve ser tomado ao construí-las.

 

Outubro Rosa na Mendelics

A Mendelics tem como missão tornar o diagnóstico genético rápido, preciso e acessível para todos que precisam. Acreditamos que para atingir esse objetivo precisamos, também, informar.

A campanha #AbraceSuaGenética traz conteúdos informativos sobre o câncer de mama: o que é e como se desenvolve, quais os fatores de risco e as medidas preventivas, principalmente focado em câncer de mama hereditário.

Confira todos os posts na nossa categoria Outubro Rosa.

O câncer de mama hereditário, retratado em The Bold Type, corresponde a cerca de 10% dos casos diagnosticados. Costuma se manifestar em vários membros da família, que compartilham alguma mutação genética que aumenta o risco da doença.

As mutações que aumentam o risco de desenvolver câncer de mama hereditário podem ser identificadas antes mesmo do aparecimento do tumor, analisando o DNA. A Mendelics possui diversos painéis para a investigação de cânceres hereditários, incluindo o Painel de Câncer de Mama e Ovário Hereditários, que analisa 37 genes associados a essas doenças.

Esse tipo de exame é importante pois traz a informação de qual mutação está presente no portador. Cada mutação aumenta o risco de uma forma diferente e pode ajudar a definir as medidas preventivas e o melhor tratamento, caso o portador desenvolva o câncer.

Além disso, o resultado pode beneficiar outros membros da família, que também podem ser portadores da mesma mutação.

É importante ressaltar que as mutações que aumentam o risco de câncer de mama, como nos genes BRCA1 e BRCA2, não afetam somente as mamas, mas também aumentam o risco de desenvolver câncer nos ovários e pâncreas. Além disso, as mutações também afetam homens, aumentando o risco de câncer de mama, pâncreas e próstata.

Quando falamos de câncer hereditário, as campanhas do Outubro Rosa e do Novembro Azul andam lado a lado. A prevenção é para toda a família.

Se você tem histórico familiar de câncer, consulte um médico e veja como se prevenir.

Abrace sua genética!

Conheça os exames genéticos para câncer de mama


Referências

  1. Engel and C. Fischer. Breast cancer risks and risk prediction models. Breast care, vol. 10, no. 1, pp. 7–12. 2015. Doi: 10.1159/000376600.
Sequenciamento Sanger: vantagens para a medicina contemporânea

Sequenciamento Sanger: vantagens para a medicina contemporânea

Entenda mais sobre a técnica de sequenciamento Sanger, que possibilitou o sequenciamento do primeiro genoma humano e como ela ainda é importante 20 anos depois.

 

História do Sequenciamento Sanger

A tecnologia de sequenciamento Sanger surgiu na década de 70 e foi o primeiro grande passo para o sequenciamento massivo de DNA, sendo conhecida hoje como sequenciamento de primeira geração. Essa foi a tecnologia que permitiu o lançamento do Projeto Genoma Humano em 1991, que prometia sequenciar o primeiro genoma humano nos 15 anos seguintes.

Em 2001, o Projeto Genoma Humano publicava o rascunho do primeiro genoma humano, 4 anos antes do previsto, graças ao Sanger e ao desenvolvimento de técnicas de sequenciamento massivo em paralelo, também conhecido como Sequenciamento de Nova Geração (NGS), que teve início na década de 1990.

 

Sequenciamento Sanger x Sequenciamento de Nova Geração

A tecnologia NGS é hoje a principal ferramenta utilizada para sequenciamento na área diagnóstica. Com ela é possível sequenciar várias regiões do DNA, e várias amostras, ao mesmo tempo, reduzindo muito o custo da análise por amostra. No entanto, esse tipo de ensaio tem suas limitações, que podem, em muitos casos, ser sanadas pela tecnologia Sanger.

Na imagem abaixo é possível ver que, com NGS, o DNA é quebrado em pequenos fragmentos, que são sequenciados e depois realinhados através de ferramentas de bioinformática, como um grande quebra-cabeças. Isso dificulta analisar regiões homólogas (semelhantes) e repetitivas do DNA por NGS, pois não sabemos onde encaixar esses fragmentos.

Ilustração comparando a análise de regiões homólogas (semelhantes) por sequenciamento de nova geração (NGS) e por sequenciamento Sanger

Figura 1. Comparação entre análises de regiões homólogas por Sequenciamento de Nova Geração (NGS) e por Sequenciamento Sanger.

Esse problema pode ser resolvido sequenciando fragmentos mais longos, que compreendam as regiões flanqueadoras (regiões que cercam esses trechos). Com peças maiores, é mais fácil resolver o quebra-cabeça.

Enquanto o NGS analisa fragmentos de até 300 pares de bases (pb), o sequenciamento Sanger permite analisar fragmentos que chegam a cerca de 800pb, sendo mais indicado para a análise de regiões complexas.

O sequenciamento tipo Sanger utiliza alguns nucleotídeos modificados com fluoróforos (moléculas que emitem luminescência), e resulta em cópias com diferentes tamanhos da sequência do DNA de interesse, mas que se iniciam na mesma posição, como mostrado na figura abaixo.

Os fragmentos são separados por tamanho e as bases finais de cada cópia são identificadas pela fluorescência.

Ilustração de como é feito o sequenciamento sanger, onde os nucleotídeos alterados com fluoróforos identificam a inserção de cada base que compõe a sequência

Figura 2. Sequenciamento Sanger. Os fragmentos sequenciados são identificados por tamanho e pela fluorescência emitida pela última case adicionada. Dessa forma é possível determinar a sequência de nucleotídeos da região de interesse.

 

Dessa forma, o sequenciamento Sanger permite identificar variantes genéticas em sequências mais longas de DNA, sem a necessidade de uma etapa computacional de reconstrução dos trechos sequenciados.

 

Sanger no diagnóstico de doenças causadas por regiões complexas

Um bom exemplo do uso do sequenciamento Sanger na medicina atual é no diagnóstico da Hiperplasia Adrenal Congênita (CAH) resultante da deficiência da enzima 21-hidroxilase.

Essa doença leva à produção excessiva de hormônios andrógenos (masculinos), podendo causar o desenvolvimento de genitália ambígua em pessoas do sexo feminino, além de puberdade precoce em ambos os sexos.

Cerca de 75% dos casos também apresenta deficiência do hormônio aldosterona, que leva à dificuldade de reter água e sais, causando desidratação, baixo volume de sangue circulante (hipovolemia) e pressão baixa (hipotensão).

A CAH com deficiência de 21-hidrogenase é causada por alterações no gene CYP21A2, que possui um pseudogene homólogo, o CYP21A1P. Esse pseudogene é uma região do DNA muito semelhante ao gene CYP21A2, porém não é funcional, ou seja, a partir dele não é possível produzir a enzima 21-hidroxilase.

Durante a formação dos gametas ocorrem alguns eventos de recombinação do DNA, nos quais os pares de cromossomos se recombinam resultando em sequências híbridas daquelas que herdamos dos nossos pais. Durante esse processo, regiões homólogas (CYP21A2 e CYP21A1P, por exemplo) podem ser indevidamente pareadas e, consequentemente, trocadas durante a recombinação.

Como mostrado na figura abaixo, tanto a troca de regiões entre o gene CYP21A2 e o pseudogene CYP21A1P, quanto a união deles (resultado de uma deleção) podem comprometer a produção da 21-hidrogenase. Cerca de 95% das alterações genéticas que levam à CAH são resultantes de recombinações entre as regiões homólogas.

Ilustração dos eventos de recombinação e deleção na região do gene CYP21A2 e do pseudogene CYP21A1P que resultam em Hiperplasia Adrenal Congênita (CAH) com deficiência da enzima 21-hidroxilase.

Figura 3. Ilustração dos eventos de recombinação e deleção na região do gene CYP21A2 e do pseudogene CYP21A1P que resultam em Hiperplasia Adrenal Congênita (CAH) com deficiência da enzima 21-hidroxilase.

O sequenciamento de Sanger é capaz de identificar essas recombinações e atingir uma taxa diagnóstica mais alta que os painéis de NGS, que não conseguem sequenciar toda a região de interesse em uma única sequência. Por isso, Sanger é a metodologia mais indicada para o diagnóstico de CAH com deficiência de 21-hidrogenase.

Na Mendelics o diagnóstico da Hiperplasia Adrenal Congênita resultante da deficiência da enzima 21-hidroxilase é feito por Sanger e MLPA, para a identificação das variantes resultantes de recombinações e das deleções, respectivamente, atingindo uma alta taxa diagnóstica para a doença.

Conheça o exame

 

Consulte sempre seu médico e, se precisar de um exame diagnóstico, entre em contato com a nossa equipe.


Referências

Khan Academy – Sequenciamento de DNA

National Human Genome Research Institute (NHGRI) – DNA Sequencing Costs: Data

National Organization for Rare Disorders – Congenital Adrenal Hyperplasia

Nimkarn S, et al. 21-Hydroxylase-Deficient Congenital Adrenal Hyperplasia. 2002. In: Adam MP, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021.

Pignatelli D., et al. The complexities in genotyping of congenital adrenal hyperplasia: 21-Hydroxylase deficiency. 2019. Frontiers in Endocrinology, vol. 10.

Câncer: Mutação somática x germinativa 

Câncer: Mutação somática x germinativa 

Quais são as origens das mutações associadas ao câncer?

 

Câncer é um grupo de mais de 100 doenças causadas por variantes patogênicas (mutações) em genes que atuam na divisão e crescimento celular.

As mutações fazem com que esses genes não executem suas funções corretamente, o que permite que as células escapem dos controles normais de crescimento e se dividam incontrolavelmente, formando o tumor.

Entenda mais sobre as causas do câncer e a importância dos exames genéticos.  

Essas mutações podem ser divididas em duas grandes categorias com base no tecido onde se originam. A origem da mutação é importante para a classificação do câncer e, principalmente, para a escolha de exames investigatórios e tratamentos.

 

Mutação na linhagem germinativa e mutação somática: qual é a diferença?

 

Mutação Somática

Mutações somáticas, ou adquiridas, são a causa mais comum de câncer e resultam de danos acumulados no DNA ao longo da vida, nas células somáticas, que são todas as células do nosso corpo com exceção das que dão origem aos óvulos e espermatozoides (Figura 1).

Esses danos podem ocorrer devido a vários fatores internos do organismo (exemplo: erros de divisão da própria célula) ou fatores externos, agentes carcinógenos (exemplos: tabagismo, exposição a produtos químicos, infecções, e radiação solar).  

Essas variantes somáticas surgem pontualmente em algumas células do corpo e não são passadas de pais para filhos (Figura 1)

Por exemplo, o câncer de mama pode se desenvolver devido a mutações que ocorrem durante a vida e se acumulam nas células da mama. Essas células alteradas, a princípio, só afetam a mama e não estarão presentes em outros órgãos do corpo (com exceção dos casos onde ocorre uma metástase – a disseminação das células cancerosas através da corrente sanguínea ou dos vasos linfáticos para outras áreas do corpo).

Os cânceres que ocorrem por variantes somáticas são chamados cânceres esporádicos. Cerca de 90% dos cânceres ocorrem devido a variantes somáticas. 

O acúmulo de variantes genéticas somáticas durante a vida é comum em todas as células e não necessariamente causam câncer, pois a maioria delas são mutações neutras ou estão em partes não codificantes do genoma.

 

Mutação da linhagem germinativa

As mutações da linhagem germinativa são muito menos comuns, representando cerca de 5% a 10% de todos os cânceres

Uma variante da linhagem germinativa está presente nas células germinativas (gametas: espermatozoide e óvulo) e é passada diretamente de um pai/mãe para um filho no momento da concepção. À medida que o embrião se desenvolve no útero da mãe, a variante patogênica é copiada para todas as células do corpo, incluindo nas células germinativas do bebê. 

Os cânceres causados ​​por variantes patogênicas da linhagem germinativa são chamados de herdados ou hereditários. Mais de 50 diferentes síndromes de câncer hereditário já foram identificadas, como a síndrome de câncer de mama e ovário hereditários

 

 

origens do câncer hereditário e germinativo

Figura 1: Ilustração da origem das mutações associadas ao câncer somático (esquerda) e hereditário(direita).

 

Saiba mais sobre o câncer de mama hereditário.

É importante ressaltar que estar exposto aos fatores de risco ou ter herdado uma variante patogênica associada ao câncer hereditário aumenta o risco de desenvolver câncer (comparado a quem não está exposto aos fatores ou não possui variante patogênica), mas não significa que a pessoa definitivamente terá a doença ao longo da vida.

 

Exames genéticos para diagnóstico de câncer

Compreender as mutações associadas ao câncer pode ajudar os especialistas a determinar quais terapias podem ser mais eficazes. 

Exames genéticos são capazes de detectar quais mutações estão associadas ao tumor do paciente e sua origem, se herdada ou somática. Essas informações podem ser utilizadas na definição de um plano de tratamento personalizado para o paciente, e no alerta para sua família.

 

Câncer esporádico – exame genético para estudo de variantes somáticas

Os exames genéticos para câncer esporádico analisam uma amostra do tumor para identificar as mutações somáticas presentes nele. Esse exame é conhecido como perfil molecular de biomarcadores oncológicos ou perfil molecular do tumor e pode ser realizado através de uma biópsia do tumor ou biópsia líquida, realizada com amostra de sangue (Figura 2).

O resultado do exame é importante para compreender o prognóstico do paciente e para a escolha de terapias específicas direcionadas ao perfil genético do tumor.

Hoje os principais testes genéticos para tratamento de câncer esporádico são de painéis de NGS.

 

Câncer hereditário – exame genético para estudo de variantes germinativas

Os exames genéticos para câncer hereditário analisam uma amostra do paciente, não do tumor, para identificar as mutações germinativas presentes nele (Figura 2). 

No câncer hereditário a mutação que causa a doença está presente em todas as células do corpo do paciente, por isso, exames para detecção desse tipo de câncer são realizados com amostra de DNA do sangue, mucosa bucal, saliva ou qualquer outro tecido.

Os principais exames genéticos para câncer hereditário são realizados por Sequenciamento de Nova Geração (NGS), como o Painel de Câncer de Mama e Ovário Hereditários, e exames de MLPA. Eles servem para diagnóstico (confirmar se a causa do câncer é hereditária) e para definir procedimentos e tratamentos preventivos, além de servir de alerta para a família do paciente, que deve seguir com medidas preventivas, como aconselhamento genético e acompanhamento médico regular.  

 

exames genéticos para câncer somático e hereditário

Figura 2: Ilustração dos diferentes tipos de amostras utilizadas nos exames genéticos para diagnóstico de câncer somático (esquerdo) e hereditário (direito).

 

Dependendo do tipo de câncer, os exames genéticos para câncer somático (análise molecular do tumor) e hereditário (pesquisa por variantes patogênicas germinativas) podem ser mutuamente indicados ​​para ajudar a selecionar as opções de tratamento.

Saiba mais sobre testes genéticos e seu impacto no tratamento para câncer de mama hereditário.

 

Outubro Rosa na Mendelics

Outubro Rosa é uma campanha realizada anualmente no mês de outubro com o objetivo de promover a conscientização sobre a importância da prevenção, do diagnóstico precoce e do tratamento do câncer de mama. 

Sabemos que a predisposição genética é um dos fatores de risco mais bem estabelecidos para câncer de mama, com até 10% dos casos sendo causados por mutações herdadas. Por isso, queremos ressaltar a importância dos exames genéticos para famílias com múltiplos casos de câncer. 

Abrace Sua Genética!

O autocuidado vai além da mamografia. Nesse #OutubroRosa lembre-se de que os exames genéticos são aliados na prevenção, diagnóstico e tratamento do câncer de mama. 

A Mendelics oferece vários exames genéticos para câncer hereditário. Converse com um médico de sua confiança e, se houver a necessidade de um exame de diagnóstico genético, entre em contato conosco!

Dúvidas? Deixe sua pergunta nos comentários abaixo.  

 

Conheça os exames genéticos para câncer de mama


Referências

  1. Anthony JF Griffiths, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM. Somatic versus germinal mutation. Nih.gov. Published 2017. Accessed September 28, 2021. https://www.ncbi.nlm.nih.gov/books/NBK21894/
  2. NCI Dictionary of Cancer Terms. National Cancer Institute. Published 2021. Accessed September 28, 2021. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/somatic-mutation
  3. NCI Dictionary of Cancer Terms. National Cancer Institute. Published 2021. Accessed September 28, 2021. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/germline-variant
Você conhece a Doença de Fabry?

Você conhece a Doença de Fabry?

Conheça a Doença de Fabry

 

A doença de Fabry é uma doença hereditária rara e progressiva caracterizada pelo acúmulo de um tipo de gordura no organismo (chamados glicoesfingolipídios), levando a sintomas graves e sistêmicos, principalmente no coração, sistema nervoso e nos rins. 

A doença ocorre em pessoas de ambos os sexos, mas seus sinais e sintomas são mais evidentes em homens devido à genética da doença. 

A doença se manifesta diferentemente em cada paciente e com diferentes gravidades, é dividida em duas formas:

  • Forma I ou clássica: sinais e sintomas se iniciam na infância ou adolescência e evoluem progressivamente até a vida adulta. 
  • Forma II ou tardia: sintomas iniciam no início da vida adulta e evoluem gravemente.

As formas de início tardio são, geralmente, subdiagnosticadas, por isso faltam informações sobre a prevalência dessa forma da doença. Estudos recentes observaram que a doença afeta 1 em cada 3.100 meninos. A frequência da doença em meninas ainda é desconhecida. 

Inicialmente a doença era tratada como uma doença de adulto, mas com o avanço dos métodos de diagnóstico e triagem na infância, observou-se que, mesmo que nas formas de início tardio, os cuidados e tratamentos podem se iniciar na infância. Por isso, hoje, o foco médico é diagnosticar crianças com Fabry o mais precocemente possível.

 

Quais os sinais e sintomas da doença de Fabry?

Os sintomas comuns incluem episódios de dor intensa e sensações de queimação e formigamento nas mãos e pés (dores neuropáticas), que podem ser desencadeados por exercícios, febre, fadiga e estresse. Além disso, com o avanço da idade, aglomerados de pequenas manchas escuras em vários locais da pele aumentam em tamanho e quantidade (angioqueratomas). 

Muitos pacientes também apresentam vários sintomas gastrointestinais (náuseas, vômitos, diarreia, falta de apetite), e perda na visão (alterações na córnea) e audição.

A doença de Fabry está associada a graves danos renais e cardíacos, que pioram com o tempo, podendo ser fatais. 

Se não tratada, a doença progride gravemente, acometendo o funcionamento de todo o organismo e das funções cognitivas, impactando fortemente a qualidade de vida das pessoas afetadas.

 

Qual a causa da doença de Fabry?

A doença de Fabry é causada por alterações (mutações) no gene GLA, que produz a enzima alfa-galactosidase A (α-Gal A) responsável por degradar moléculas de gordura, principalmente a globotriaosilceramida (Gb3 ou GL-3) encontradas nos lisossomos (compartimento celular responsável por digerir e reciclar moléculas) presentes nas células do corpo inteiro. 

Em pacientes com Fabry, a falta ou redução da α-Gal A faz com que moléculas de gordura se acumulem nas células

Como os lisossomos estão presentes em todos os tipos de célula, o acúmulo das moléculas de gordura ocorre em todo o organismo, ocasionando os sintomas multissistêmicos da doença. Os primeiros sintomas aparentes ocorrem em pequenos vasos sanguíneos, no coração e nos rins, porém, com o tempo (e sem tratamento), podem ser vistos em praticamente todos os órgãos. 

Os sintomas da doença e a sua gravidade vão depender da quantidade e da qualidade do funcionamento da α-Gal A: uma enzima incapaz de funcionar ou com atividade baixa está associada ao desenvolvimento do tipo clássico de doença de Fabry, enquanto a atividade moderada está ligada à forma de início tardio.

 

Como Fabry pode ser herdada?

O gene GLA está localizado no cromossomo X, um dos dois cromossomos sexuais:

  • Nos homens (que têm apenas um cromossomo X herdado da mãe), uma cópia alterada do gene em cada célula é suficiente para causar a doença, que é geralmente mais grave. 
  • Nas mulheres (que têm dois cromossomos X), a presença de uma cópia do gene sem mutação pode compensar parcialmente a outra cópia mutada (devido a inativação do X), por isso, os sintomas são variáveis, podendo ser mais ou menos graves.

Por ser uma doença ligada ao X, assume-se erroneamente que as mulheres são apenas portadoras da mutação e não manifestam a doença. Após diversos estudos, sabe-se que mulheres podem manifestar a doença tão gravemente quanto os homens, devido a inativação do X. 

Mulheres com Fabry tem 50% de chance de transmitir o gene GLA mutado para seus filhos, independentemente do sexo. 

Já os homens com Fabry vão transmitir o gene mutado para todas as filhas e para nenhum dos seus filhos homens, pois os meninos só recebem um cromossomo Y de seus pais, em vez de um cromossomo X.

É importante que seja feito aconselhamento genético em famílias com histórico de Fabry para que os pais compreendam suas chances de ter outro filho com a doença e, principalmente, para que outros familiares portadores sejam identificados e possam conhecer seus riscos.

Para entender mais sobre padrões de herança de doenças genéticas, leia esse artigo.

 

Como é feito o tratamento da doença de Fabry?

A doença de Fabry não tem cura, mas tem tratamento. 

Atualmente (09/2021), existem três opções de tratamentos aprovados pela ANVISA no Brasil: dois através da TRE (terapia de reposição enzimática, alfa e beta agalsidase), que repõem a enzima α-Gal A em falta no organismo, evitando danos aos órgãos dos pacientes e melhorando sua qualidade de vida; e um medicamento para pessoas com mutações específicas (Cloridrato de Migalastate). 

O tratamento só deve ser iniciado por um médico especialista em doença de Fabry ou doenças do metabolismo/de depósito lisossomal. 

Ainda não existe tratamento incorporado no Sistema Único de Saúde (SUS).

Além disso, analgésicos para controlar as dores neuropáticas e medicamentos para tratar os sintomas cardiovasculares também podem ser usados. Pacientes mais graves com insuficiência renal podem necessitar de diálise e transplante renal.

Além do tratamento medicamentoso, pacientes com Fabry necessitam de acompanhamento por vários especialistas e equipe multidisciplinar, com realização periódica de exames laboratoriais e avaliações clínicas. 

 

O diagnóstico precoce é fundamental 

Por ser uma doença rara e multissistêmica, a doença de Fabry é, consequentemente, pouco conhecida e possui um maior desafio para o seu diagnóstico precoce visto que os primeiros sinais são muito inespecíficos, principalmente em meninas, e são frequentemente confundidos com outras doenças.

Mesmo pacientes assintomáticos são beneficiados pelo diagnóstico e acompanhamento precoce, pois muitas alterações, principalmente na função renal, ficam ocultas até se tornarem mais graves. Quanto mais tarde o diagnóstico é feito, mais tarde o tratamento é iniciado, impactando diretamente a qualidade e expectativa de vida do paciente.

 

Como é feito o diagnóstico da doença?

A suspeita de Fabry é feita com base em exames clínicos, e nos sinais e sintomas do paciente.

Em meninos, o diagnóstico pode ser confirmado através de exames laboratoriais para detectar níveis anormais de atividade da α-Gal A.

Como muitas pacientes meninas podem ter uma atividade da α-Gal A dentro da normalidade, este teste não fornece um diagnóstico preciso, sendo indicado realizar um exame genético para identificação das variantes presentes no gene GLA.

Para ambos os sexos, a confirmação do diagnóstico da doença é feita pelo exame genético capaz de detectar variantes patogênicas no GLA, a única maneira conclusiva de diagnosticar a doença de Fabry, sendo recomendado para qualquer indivíduo com diagnóstico clínico confirmado ou suspeito, ou histórico da doença na família.

 

Diagnóstico da doença de Fabry na Mendelics

A Mendelics possui diversos Painéis de Sequenciamento de Nova Geração (NGS) para doenças metabólicas e doenças genéticas de início precoce.

Para o diagnóstico de Fabry, a Mendelics oferece o Painel de Doenças Tratáveis e o Painel de Distúrbios da Função Renal, entre outros.

Converse com um médico de sua confiança e, se houver a necessidade de um exame diagnóstico genético, entre em contato conosco!

Conheça a Mendelics

Quer saber mais sobre a Doença de Fabry? Deixe sua pergunta nos comentários abaixo ou entre em contato com a nossa equipe pelo telefone (11) 5096-6001 ou através do nosso site.

 


Referências

  • Ortiz A, Germain DP, Desnick RJ, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123(4):416-427. doi:10.1016/j.ymgme.2018.02.014
  • Germain DP, Fouilhoux A, Decramer S, et al. Consensus recommendations for diagnosis, management and treatment of Fabry disease in paediatric patients. Clin Genet. 2019;96(2):107-117. doi:10.1111/cge.13546
  • https://rarediseases.org/rare-diseases/fabry-disease/
Forrest Gump: um retrato singular da Deficiência Intelectual

Forrest Gump: um retrato singular da Deficiência Intelectual

A Deficiência Intelectual é retratada no filme premiado Forrest Gump

O filme de 1994 conta a história de Forrest Gump, um simpático e modesto cidadão do Alabama que possui deficiência intelectual (DI). O que torna a narrativa tão interessante é que toda a trajetória do personagem é contada por ele mesmo e, por isso, vem com a mesma leveza do personagem, resultando em uma comédia contagiante.

Durante o filme vemos todos os principais marcos da vida de Forrest, que foi particularmente impressionante, principalmente considerando que ele possui DI, condição muitas vezes vista como um impedimento para o sucesso profissional e pessoal.

Forrest mostra que com paciência e dedicação tudo é possível. Ao decorrer da narrativa, Forrest passa por todo tipo de experiência, desde servir o exército americano na Guerra do Vietnã, conhecer o presidente, ser campeão de tênis de mesa, conhecer o presidente (de novo!), atravessar o país correndo, fundar uma das maiores empresas de pesca de camarão e até servir como inspiração para a criação do smiley face.

Além de suas conquistas profissionais, o filme também mostra os marcos da sua vida pessoal. Desde seu relacionamento com a mãe, responsável pela visão leve que ele tem do mundo, às amizades que fez ao longo da vida e até o romance com sua amiga de infância, Jenny.

A forma como a história de Forrest Gump é contada deixa ele em foco e não a sua deficiência, uma ótima forma de mostrar a DI de forma leve, divertida e livre de capacitismo (Preconceito contra pessoas com deficiências). Quem assiste se deleita com a sua vida cheia de grandes acontecimentos e com sua perspectiva única e cativante sobre os eventos que ocorreram nas décadas de 60 e 70.

O filme foi indicado para 13 categorias dos Oscars e ganhou seis delas, incluindo Melhor Filme e Melhor Ator para Tom Hanks no papel de Forrest Gump. 

 

O que é Deficiência Intelectual?

A deficiência Intelectual é caracterizada por um atraso no desenvolvimento intelectual e comprometimento cognitivo que se tornam aparentes antes dos 18 anos, enquanto o cérebro ainda está se desenvolvendo. Pessoas com DI têm dificuldade para aprender e realizar tarefas do dia a dia e interagir com o meio em que vivem. Ou seja, existe um comprometimento cognitivo que prejudica suas habilidades adaptativas como resolver problemas inesperados do cotidiano, conversar com desconhecidos, nutrir relacionamentos, pagar contas, efetuar tarefas de casa, etc.

A deficiência intelectual não é uma doença, sendo definida como um distúrbio do neurodesenvolvimento. 

Pode ser causada por alterações genéticas e fazer ou não parte de uma síndrome (DI sindrômica ou DI não-sindrômica, respectivamente), pode ocorrer devido a fatores ambientais durante a gravidez ou após o nascimento como: desnutrição materna, uso de medicamentos, drogas e/ou álcool, infecções virais, prematuridade, hipóxia, entre outros.

Dentre as condições genéticas associadas à deficiência intelectual, trouxemos as principais e mais conhecidas pela população:

 

Síndrome de Down

É causada por uma alteração genética onde o indivíduo possui três cópias do cromossomo 21 (trissomia), ao invés de duas.

O nível de deficiência intelectual causada pela síndrome é variado, e pode vir acompanhada de distúrbios do comportamento como hiperatividade e depressão.

No Brasil, 1 a cada 700 pessoas possuem Síndrome de Down.

 

Síndrome do X-Frágil

É causada por uma alteração no gene FMR1 que se encontra no cromossomo X. O X é um cromossomo sexual, sendo que mulheres possuem duas cópias e homens somente uma. Ambos os sexos são afetados, mas os homens apresentam sintomas mais acentuados.

A deficiência intelectual causada pela síndrome costuma ser moderada em homens e leve em mulheres, e pode estar acompanhada de dificuldade de socialização e hiperatividade.

A síndrome afeta 1 a cada 4 mil homens e 1 a cada 7 mil mulheres no mundo.

 

Síndrome de Prader-Willi

É causada por alterações genéticas no cromossomo 15 que podem afetar diversos genes e leva à hipotonia muscular, baixo peso e pequena estatura.

A deficiência intelectual causada pela síndrome varia de leve a moderada e pode vir acompanhada de atrasos no desenvolvimento motor e distúrbios alimentares.

A síndrome afeta pelo menos 1 a cada 15.000 pessoas no Brasil e no mundo.

 

Síndrome de Angelman

É causada por alterações genéticas no gene UBE3A, localizado no cromossomo 15, e leva a uma grande variedade de sintomas, sendo os mais comuns o atraso grave no desenvolvimento intelectual e motor, dificuldade ou ausência de fala e risos involuntários.

A deficiência intelectual causada pela síndrome costuma ser grave.

Estima-se que a síndrome afete pelo menos 1 a cada 12.000 pessoas no mundo.

 

Síndrome Williams

É causada por alterações genéticas que afetam diversos genes no cromossomo 7, e leva ao atraso no crescimento e baixa estatura, além de problemas cardíacos e níveis alterados de cálcio em alguns casos.

A deficiência intelectual causada pela síndrome varia de leve a moderada.

A síndrome afeta pelo menos 1 a cada 10.000 pessoas no mundo.

 

Diagnóstico molecular da Deficiência Intelectual

Todas as síndromes descritas, dentre outras, são detectáveis por exames genéticos oferecidos pela Mendelics. Confira a lista completa no nosso site.

Existe uma grande variedade de tipos de deficiência intelectual, com diferentes causas, o que dificulta o diagnóstico. Ao todo a DI afeta cerca de 1 a 3% da população mundial mas, infelizmente, cerca de 50% dos casos permanecem sem diagnóstico. Por isso, várias alternativas para o diagnóstico já estão sendo aplicadas.

O Sequenciamento Completo do Exoma (SCE) elevou a taxa de diagnósticos de 15% para até 68% dos casos (em comparação com as técnicas de cariótipo e microarray). A técnica avalia o exoma, que comporta todas as porções do DNA responsáveis pela produção de proteínas, ou seja, as partes do DNA que estão fortemente relacionadas com a maior parte das doenças genéticas.

A Mendelics é pioneira e líder em Exoma na América Latina e oferece o produto mais completo do mercado. O Exoma Mendelics inclui também a avaliação de CNVs (Variação do Número de Cópias) e DNA mitocondrial, sempre que necessário, sem custos adicionais, rendendo uma taxa de diagnóstico mais alta.

Entenda mais sobre a contribuição do Exoma para o Diagnóstico da deficiência intelectual nesse artigo.

Conheça o Exoma Mendelics


Referências

Instituto Jô Clemente

Federação Brasileira das Associações de Síndrome de Down

National Organization for Rare Disorders – Fragile X Syndrome

National Organization for Rare Disorders – Prader Willi Syndrome

Sociedade Brasileira de Pediatria – Síndrome de Prader Willi

National Organization for Rare Disorders – Angelman Syndrome

National Organization for Rare Disorders – Williams Syndrome

Associação Brasileira da Síndrome de Williams

Ilyas M., Mir A., Efthymiou S. et al. The genetics of intellectual disability: advancing technology and gene editing. F1000Res. 2020 Jan 16;9:F1000 Faculty Rev-22.

Milani D., Ronzoni L., Esposito S. Genetic Advances in Intellectual Disability. J Pediatr Genet. 2015 Sep;4(3):125-7.

Li Y., Anderson L.A., Ginns E.I. et al. Cost Effectiveness of Karyotyping, Chromosomal Microarray Analysis, and Targeted Next-Generation Sequencing of Patients with Unexplained Global Developmental Delay or Intellectual Disability. Mol Diagn Ther. 2018; 22:129–138.

Santos-Cortez R.L.P., Khan V., Khan F.S. et al. Novel candidate genes and variants underlying autosomal recessive neurodevelopmental disorders with intellectual disability. Hum Genet. 2018 Sep;137(9):735-752.

Gilissen C., Hehir-Kwa J., Thung D. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014; 511:344–347.