Vacinas para COVID-19 testadas no Brasil

Vacinas para COVID-19 testadas no Brasil

Vacinas para COVID-19

Entenda mais sobre as vacinas para COVID-19 que estão sendo testadas no Brasil. 

Até o momento, Janeiro de 2021, pesquisadores de todo o mundo estão trabalhando no desenvolvendo de mais de 200 vacinas contra o coronavírus, dessas, pelo menos 85 estão sendo testadas em animais em ensaios pré-clínicos, 65 já estão na fase de ensaios clínicos em humanos (1, 2), 8 foram aprovadas para uso emergencial e 2 foram aprovadas depois que os órgãos regulatórios analisaram os resultados de todos os ensaios.

Normalmente, vacinas exigem anos de pesquisa e testes antes de chegar à clínica, contudo na pandemia do COVID-19, cientistas, governos e indústrias uniram esforços para produzir vacinas seguras e eficazes em apenas poucos meses. 

Quer ler sobre genética e casos graves de COVID? Leia esse post em nosso blog.

 

Tipos de Vacinas desenvolvidas

Antes de saber sobre as vacinas testadas no Brasil, conheça os tipos de vacinas que estão sendo testadas para COVID-19 no mundo.

O objetivo de qualquer vacina é conseguir provocar ou induzir a resposta imune do indivíduo de modo que quando for de fato exposto ao vírus, seu sistema imune seja capaz de bloqueá-lo ou matá-lo.

As vacinas para COVID-19 em teste podem ser de 4 tipos (com 2 subtipos cada uma) (3): 

1. Vacina de vírus: o vírus é modificado para que se torne menos capaz de causar a doença.

  • Inativado
  • Enfraquecido

2. Vacina de Vetor Viral: um vírus é geneticamente modificado para produzir proteínas do  SARS-CoV-2. Alguns são capazes de se replicar dentro das células e outros não.

  • Replicante
  • Não replicante

3. Vacina de Ácido Nucleico: o  material genético do vírus é inserido nas células humanas, que produzem cópias de alguma proteína viral (exemplo: proteína spike).

  • DNA
  • RNA

4. Vacina à base de proteínas: proteínas do SARS-CoV-2 são injetadas diretamente no organismo. Também podem ser usados fragmentos de proteínas similares a estrutura do vírus.

  • Subunidade proteica
  • Partículas semelhantes a vírus

 

Vacinas em teste no Brasil

 

O processo de desenvolvimento de uma vacina inclui uma série de fases, desde o seu início no laboratório até a sua utilização na imunização da população. A primeira etapa são os ensaios pré-clínicos, onde são realizados testes em animais, e depois se inicia a etapa de ensaios clínicos em humanos, que possui várias fases.

Das 64 vacinas em ensaios clínicos em humanos no mundo, 20 estão na Fase III, que testa a eficácia da vacina em larga escala. Quatro delas estão sendo testadas no Brasil (4, 5, 6).

CoronaVac da Sinovac Biotech: vacina de vírus inativado.

  • Nome: CoronaVac
  • Dose: 2 doses, 21 dias de intervalo
  • Tipo: injeção muscular
  • Armazenagem: geladeira, 2 a 8 ºC

Em junho deste ano, a empresa Sinovac Biotech anunciou que os ensaios clínicos da Fase I e II em 743 voluntários obtiveram sucesso, a vacina produziu resposta imune, não sendo identificados efeitos adversos graves. 

Em julho, a empresa iniciou um estudo de Fase III no Brasil, em colaboração com o Instituto Butantan para testar 9 mil voluntários brasileiros.

Em janeiro de 2021, os resultados dos estudos de Fase III foram liberados e o governo do estado de São Paulo e o Instituto Butantan enviaram o pedido de autorização para o uso emergencial à Agência Nacional de Vigilância Sanitária (Anvisa). 

A previsão é de que a vacinação inicie dia 25 de janeiro no Estado de São Paulo. 

 

ChAdOx1 nCoV-19 da AstraZeneca e da Universidade de Oxford: vacina de vetor viral não-replicante (adenovírus de chimpanzé).

  • Nome: AZD1222
  • Dose: 2 doses, 4 semanas de intervalo
  • Tipo: injeção muscular
  •   Armazenamento: geladeira, 2 a 8º C

 

Em 8 de dezembro, pesquisadores da Universidade de Oxford e da AstraZeneca publicaram um artigo científico com resultados de segurança e eficácia do ensaio clínico de Fase 3 da vacina, realizado no Brasil, África do Sul e Inglaterra (7).

Em 11 de dezembro a AstraZeneca anunciou que vai colaborar com os pesquisadores da vacina Sputnik V, da Rússia, que também é feita a partir de adenovírus. No dia 29 de dezembro a Anvisa recebeu o pedido para início dos estudos da Fase III da vacina  Sputnik V (8). O objetivo é testar se as duas vacinas juntas aumentam a proteção contra o vírus.

No dia 04 de janeiro de 2021, o Reino Unido começou a vacinação da população com a primeira dose da vacina. No dia 8 de janeiro foi realizado o pedido de autorização para o uso emergencial à Agência Nacional de Vigilância Sanitária (Anvisa). 

BNT162 da BioNTech em colaboração com Pfizer e a Fosun Pharma: vacina de mRNA.

  • Nome: Comirnaty (tozinameran ou BNT162b2)
  • Dose: 2 doses, 3 semanas de intervalo
  • Tipo: injeção muscular
  • Armazenamento: freezer a –70 ° C

 

Em Maio, os estudos de Fase I e II foram completados com sucesso: os voluntários produziram anticorpos contra o SARS-CoV-2, bem como as células T específicas ao vírus. Em 27 de julho, as empresas anunciaram o início do estudo de Fase II e III com 30.000 voluntários nos Estados Unidos e em outros países, incluindo Argentina, Brasil e Alemanha.

Em 9 de novembro, Pfizer e BioNTech apresentaram os dados preliminares com a vacina demonstrando mais de 90% de eficácia. Em 2 de dezembro o Reino Unido deu autorização de uso de emergência da vacina e iniciou a vacinação da população inglesa dia 8 de dezembro. 

Em 11 de dezembro, a FDA (Food and Drug Administration) autorizou o uso de emergência da vacina nos Estados Unidos e iniciou a vacinação no dia 14. Vários países já concederam autorização de emergência para o uso da Comirnaty, incluindo Argentina, Chile, Costa Rica, Equador, Kuwait, México, Panamá e Cingapura.

A União Europeia aprovou a vacina em 21 de dezembro. Outros países como o Bahrein, Canadá, Arábia Saudita e Suíça deram a aprovação total. 

No Brasil, os resultados dos estudos de Fase III ainda não foram liberados e o pedido de registro da vacina na ANVISA também não foi realizado. 

 

Ad26.COV2.S da Jansen-Cilag (Johnson-Johnson): vacina de vetor recombinante, não replicante, de adenovírus tipo 26 (Ad26).

  • Nome: Ad26.COV2.S
  • Dose: 1 dose
  • Tipo: injeção muscular
  • Armazenagem: geladeira, 2 a 8º C

 

Em julho, a Johnson & Johnson lançou os estudos de Fase I e II nos EUA e na Bélgica. Os ensaios clínicos de Fase III começaram em setembro – inicialmente de apenas 1 dose. Em novembro, a empresa anunciou que vai realizar a segunda etapa da Fase III para testar a eficácia de duas doses da vacina. Espera-se que os resultados sejam apresentados em janeiro de 2021.

Para o estudo no Brasil, o projeto prevê a inclusão de sete mil voluntários, nos estados de São Paulo, Rio Grande do Sul, Rio de Janeiro, Paraná, Minas Gerais, Bahia e Rio Grande do Norte. 

No Brasil, os resultados dos estudos de Fase III ainda não foram liberados, bem como o pedido de registro da vacina na ANVISA. 

 


Referências

  1. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html
  2. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
  3. https://www.nature.com/articles/d41586-020-01221-y
  4. https://saude.abril.com.br/medicina/como-funcionam-as-vacinas-mais-avancadas-contra-o-coronavirus/
  5. https://www.saopaulo.sp.gov.br/wp-content/uploads/2020/06/Apresentacao-CoronavirusVacina_Dr-Dimas_10_06.pdf
  6. http://portal.anvisa.gov.br/noticias/-/asset_publisher/FXrpx9qY7FbU/content/anvisa-autoriza-novo-ensaio-clinico-de-vacina-para-covid-19/219201?p_p_auth=JxOO9RPs&inheritRedirect=false&redirect=http%3A%2F%2Fportal.anvisa.gov.br%2Fnoticias%3Fp_p_auth%3DJxOO9RPs%26p_p_id%3D101_INSTANCE_FXrpx9qY7FbU%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3D_118_INSTANCE_KzfwbqagUNdE__column-2%26p_p_col_count%3D2
  7. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)32661-1/fulltext
  8. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2020/andamento-da-analise-das-vacinas-na-anvisa

 

2020: Notícias do ano na Ciência

2020: Notícias do ano na Ciência

2020: O ano da ciência

O ano de 2020 teve a ciência como assunto principal desde seu início. Desde as primeiras notícias sobre uma possível pandemia causada por um vírus, à identificação do vírus, o desenvolvimento de testes diagnósticos, estudos epidemiológicos e clínicos e, é claro, o assunto que está em destaque no momento: o desenvolvimento da vacina. 

Mas a pandemia pela COVID-19 não foi o único tema do ano, a edição gênica e o sequenciamento do genoma também tiveram enfoque. Confira abaixo a retrospectiva que preparamos com os temas mais discutidos pela ciência nacional.

 

Junho 

Variações no nosso DNA nos tornam mais susceptíveis à infecção pelo SARS-COV-2? 

Na tentativa de compreender a grande variabilidade de sintomas associados a infecção por SARS-CoV-2, um estudo da revista New England Journal of Medicine (NEJM) analisou cerca de 2 mil pacientes com COVID por GWAS e sugeriu uma potencial associação entre grupo sanguíneo ABO e gravidade de COVID-19.

 

Julho 

Você conhece as diferenças entre os testes para a COVID-19? 

Apenas algumas semanas após a identificação do primeiro caso da COVID-19, vários tipos de testes foram desenvolvidos e disponibilizados por laboratórios de todo o mundo. Cada teste tem sua função e é indicado para um momento específico da infecção ou até após ela ocorrer. 

 

Agosto 

Testagem em massa da COVID-19

Enquanto o Brasil iniciou o processo de afrouxamento das medidas de isolamento social, vários estudos publicados mostraram que a testagem em massa da COVID-19 seria um possível caminho para o retorno seguro de escolas e empresas. A testagem em massa identifica assintomáticos e pré-sintomáticos e é a melhor estratégia para reduzir a transmissão da COVID-19 e impedir novos surtos.

 

Outubro

CRISPR/Cas9: Prêmio Nobel de Química 2020

O mundo conheceu as vencedoras do prêmio Nobel de química de 2020. As cientistas, Dra. Jennifer Doudna e Dra. Emmanuelle Charpentier, foram laureadas pelo desenvolvimento da técnica de edição gênica CRISPR/Cas9. 

O prêmio foi mais que merecido. O campo para uso do CRISPR/Cas9 é vasto e promissor, tanto para humanos quanto para animais e plantas. Muitas indústrias agrícolas estão desenvolvendo sistemas de controle de pragas, ou melhoramento de plantas e muitos estudos clínicos de terapias gênicas para câncer, doenças raras e infecciosas estão sendo conduzidos.

 

Publicação do protocolo do #PARECOVID

Com a missão de democratizar o acesso a testes para COVID-19 para todos que necessitam, a Mendelics publicou o protocolo do #PARECOVID. Através da estratégia de RT-LAMP, o teste mostra se a pessoa está infectada pela identificação do RNA do vírus SARS-CoV-2 na saliva. 

O #PARECOVID é o teste de maior capacidade lançado no Brasil até o momento, com capacidade de testagem diária de 30.000 amostras, e os resultados são disponibilizados em até 24 horas. 

 

30 Anos do lançamento do Projeto Genoma Humano 

Aniversário de 30 anos do lançamento do projeto genoma humano (Human Genome Project, HGP), o projeto que desvendou pela primeira vez a complexa estrutura do genoma humano. 

Ao todo, 3 bilhões de pares de bases foram sequenciados, e mais de 20.000 genes foram identificados e mapeados. Com o auxílio das novas técnicas de sequenciamento, o estudo do genoma se tornou uma realidade, mais acessível e mais rápido permitindo uma expansão e evolução do diagnóstico genético, da prevenção até da escolha da melhor tratamento. 

A Mendelics se orgulha em fazer parte dessa história, por ser pioneira em implementar o NGS no Brasil. O aniversário do HGP é uma data especial para mundo e para nós, que temos como missão tornar o diagnóstico genético cada vez mais rápido, preciso e acessível para todos.

 

Abertura de protocolo do #PARECOVID (RT-LAMP)

Abertura de protocolo do #PARECOVID (RT-LAMP)

Entenda como o teste #PARECOVID (RT-LAMP) é realizado

Métodos de testagem escaláveis e econômicos são uma ferramenta essencial para controlar a disseminação de SARS-CoV-2 e impedir novos surtos da COVID-19. 

Com a missão de democratizar o acesso a testes para COVID-19 para todos que necessitam, desde junho, a Mendelics oferece um teste molecular de desenvolvimento próprio chamado #PARECOVID. Através da estratégia de RT-LAMP, o teste mostra se a pessoa está infectada pela identificação do RNA do vírus SARS-CoV-2 na saliva. O #PARECOVID é o teste de maior capacidade lançado no Brasil até o momento, com capacidade de testagem diária de 30.000 amostras, e os resultados são disponibilizados em até 24 horas. 

Desde 2000 o RT-LAMP já foi utilizado para o diagnóstico de Zika, Influenza, Ebola, Dengue, entre várias outras doenças infecciosas (1-4). No Brasil o RT-LAMP foi adaptado pela primeira vez para a detecção do SARS-CoV-2 pela Mendelics. O protocolo desenvolvido pelo laboratório também introduz outras duas importantes inovações: validação em amostra de saliva e não requer etapa de extração RNA do vírus.

A validação do #PARECOVID, realizada em parceria com o Hospital Sírio Libanês, foi feita com testagem paralela de RT-PCR, técnica padrão-ouro para diagnóstico da COVID-19. A comparação de resultados de amostras de 244 pacientes sintomáticos mostrou que o RT-LAMP tem sensibilidade para detecção do vírus equivalente ao RT-PCR (78,9% vs. 85,5%) e especificidade de 100%. O protocolo e as etapas da validação do teste foram publicados esta semana, em um artigo da plataforma internacional de conteúdo científico medRxiv (5). 

O teste de RT-LAMP desenvolvido pela Mendelics é rápido (o protocolo completo pode ser executado em 3 horas), preciso (detecta o vírus nos estágios iniciais da infecção) e tem custo acessível. O método depende de reagentes que não estão em falta no mercado e de equipamentos já utilizados por grande parte dos laboratórios, facilitando sua reprodução em todo o mundo.  A divulgação  do protocolo permite que outros laboratórios se juntem aos esforços para que o número de testes possa chegar a centenas de milhares por dia.

Acompanhe abaixo os principais pontos esclarecidos pela publicação do protocolo, que também pode ser acessado clicando aqui.  

Como foi feita a coleta das amostras usadas na validação do teste?

As 244 amostras usadas na validação do teste foram coletadas de pacientes do Hospital Sirio Libanês que apresentavam sintomas sugestivos de COVID-19.  As amostras foram coletadas entre um a sete dias após o início dos sintomas. 

Para o teste de RT-PCR foi feita a coleta de amostra nasofaríngea com auxílio de swab estéril e o processamento foi realizado em laboratório clínico independente. A coleta de saliva para o RT-LAMP foi feita pelo próprio paciente e as amostras foram testadas na Mendelics por RT-LAMP entre um a três dias após a coleta. O RNA do SARS-CoV-2 foi identificado por pelo menos um dos dois métodos em 31% dos pacientes (76/244).

 

Como foi feita a etapa de RT-LAMP?

O método de RT-LAMP combina duas técnicas: a transcriptase reversa (RT) e o LAMP.  Na etapa de Transcriptase reversa (RT) o RNA do SARS-CoV-2, se presente, é transformado em cDNA (DNA complementar). A amplificação do cDNA do vírus no LAMP foi feita em temperatura fixa, por cerca de uma hora, em um termociclador convencional. O alvo da amplificação foi o gene Nucleocapsid, escolhido por apresentar um maior número de cópias que outros segmentos do genoma do vírus.  

Para amplificação da região-alvo foram usados  três pares de primers.  O uso de mais de um par de primers torna a reação mais rápida, pois forma novos sítios para início da amplificação a partir da criação de estruturas de loop.  

 

Como foi feita a análise dos resultados?

Os resultados do RT-LAMP foram analisados por fluorescência e Bioanalyzer e também foram confirmados por análise de curva de dissociação em equipamento de PCR em tempo real. A estratégia de confirmação garante a identificação de baixas cargas virais em amostras consideradas negativas na primeira análise e aumenta a especificidade de detecção do SARS-CoV-2.

 

Qual o limite de detecção do teste?

O teste é capaz de detectar o RNA do SARS-CoV-2 em concentrações de  2.5 cópias per μl, considerando 8 ml de saliva. O limite de detecção foi estabelecido na validação por meio da diluição seriada de RNA sintético do SARS-CoV-2.

 

Qual a sensibilidade e especificidade do teste?

–  O RT-LAMP identificou 60 dos 76 infectados (sensibilidade de 78.9%) 

–  Não foram identificados falsos-positivos, ou seja, todos os resultados positivos foram de pacientes infectados pela COVID-19 (especificidade de 100%). 

 

Os resultados do RT-LAMP são equivalentes ao RT-PCR?

O RT-PCR identificou 65 dos 76 pacientes infectados, por isso, apresentou  sensibilidade de 85.5% (vs os 78.9% do RT-LAMP).  Dezesseis pacientes positivos foram identificados apenas no RT-PCR e 11 pacientes positivos foram identificados apenas por RT-LAMP. 

Embora o RT-PCR tenha sensibilidade superior ao RT-LAMP, as diferenças entre as duas técnicas não foram consideradas estatisticamente significativas, conforme demonstrado na publicação.

 

Qual a vantagem de usar saliva em comparação a amostra nasofaríngea?

A maioria dos testes diagnósticos de COVID-19, como o RT-PCR, são feitos a partir da coleta de swab nasofaríngeo, no qual um cotonete é introduzido na garganta ou no nariz do paciente. Além do desconforto que a coleta causa nos pacientes, há também o risco de contaminação para os profissionais de saúde. Como resultado da enorme demanda mundial, o kit de coleta de swab também está em falta no mercado, o que contribui para a limitação da capacidade de testagem no Brasil.

A saliva é uma alternativa segura ao swab nasofaríngeo, já que a coleta não é invasiva e pode ser feita pelo próprio paciente.  A escolha da saliva foi embasada em artigos que demonstraram que a saliva é tão eficaz quanto amostras nasofaríngeas para identificar o SARS-CoV-2 (6,7,8).  

 

Por que foi importante eliminar a etapa de extração de RNA do protocolo do RT-LAMP?

A maioria dos testes diagnósticos para COVID-19 exigem uma etapa de extração do material genético do vírus que, embora contribua para o aumento de sensibilidade do teste, traz vários problemas. Além de impactar no tempo total de entrega do resultado, a extração introduz outros gargalos:  falta de reagentes, dificuldades técnicas envolvidas na extração seja ela automatizada ou manual e custos adicionais. 

A etapa laboratorial do RT-LAMP da Mendelics é realizada diretamente a partir da amostra de saliva do paciente, o que contribui para redução do custo e tempo de entrega do teste. 

 

Esse é o único protocolo de validação de RT-LAMP para COVID-19?

Não. Desde maio de 2020 vários grupos de pesquisa e alguns laboratórios clínicos também publicaram protocolos baseados em RT-LAMP para diagnóstico SARS-CoV-2 (9-19). Mas a maioria depende de coleta de amostra nasofaríngea com swab e extração de RNA, que conforme previamente destacado, são duas etapas problemáticas dos testes. 

 

A publicação do protocolo do RT-LAMP representou um grande marco para a Ciência brasileira e para o combate à pandemia no país e no mundo.

Quer saber mais sobre o teste?

 

A Mendelics conta uma equipe dedicada exclusivamente ao suporte de clientes #PARECOVID. Entre em contato conosco pelo telefone (11) 4637-4356 ou acesse nosso site para que possamos auxiliá-lo no retorno seguro da sua empresa ou centro educacional.

 


Referências

  1. Notomi T et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.
  2. Wang X, Yin F, Bi Y, et al. Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification. J Virol Methods. 2016;238:86‐93.4
  3. Poon, LLM. et al. 2005. “Detection of Human Influenza A Viruses by Loop-Mediated Isothermal Amplification.” Journal of Clinical Microbiology 43 (1): 427–30.
  4. Kurosaki, YNF. Magassouba, and O. K. Oloniniyi. 2Development and Evaluation of Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay Coupled with a Portable Device for Rapid Diagnosis of Ebola Virus Disease in Guinea. PLoS Negl Trop Dis 2016 Feb 22;10(2):e0004472. 
  5. Asprino et al. A Scalable Saliva-based, Extraction-free RT-LAMP Protocol for SARS-Cov-2 Diagnosis, https://doi.org/10.1101/2020.10.27.20220541
  6. Wyllie, Anne L. et al. 2020. “Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2.”The New England Journal of Medicine 383 (13): 1283–86.
  7. Wyllie, A L, et al. 2020. “Saliva Is More Sensitive for SARS-CoV-2 Detection in COVID-19 Patients than Nasopharyngeal Swabs.” Medrxiv. https://www.medrxiv.org/content/10.1101/2020.04.16.20067835v1
  8. Vogels et al. SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity. medRxiv 2020.08.03.20167791; 
  9. Color Genomics SARS-CoV-2 RT-LAMP Diagnostic Assay EUA Summary; September 22, 2020 https://www.fda.gov/media/138249/download
  10. Lalli MA. et al. 2020. “Rapid and Extraction-Free Detection of SARS-CoV-2 from Saliva with Colorimetric LAMP.” medRxiv : The Preprint Server for Health Sciences, May. https://doi.org/10.1101/2020.05.07.20093542.
  11. Huang WE, Lim B, Hsu CC, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol. 2020;13(4):950-961. 
  12. Yu L, Wu S, Hao X, et al. Rapid Detection of COVID-19 Coronavirus Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform. Clin Chem. 2020;66(7):975-977. 
  13. Park GS, Ku K, Baek SH, et al. Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Mol Diagn. 2020;22(6):729-735.
  14. Kashir J, Yaqinuddin A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med Hypotheses. 2020;141:109786.
  15. Lu R, Wu X, Wan Z, Li Y, Jin X, Zhang C. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of SARS-CoV-2. Int J Mol Sci. 2020;21(8):2826
  16. Jiang M, Pan W, Arasthfer A, et al. Development and Validation of a Rapid, Single-Step Reverse Transcriptase Loop-Mediated Isothermal Amplification (RT-LAMP) System Potentially to Be Used for Reliable and High-Throughput Screening of COVID-19. Front Cell Infect Microbiol. 2020;10:331.
  17. Yan C, Cui J, Huang L, et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin Microbiol Infect.
  18. Baek YH, Um J, Antigua KJC, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg Microbes Infect. 2020;9(1):998-1007.
  19. Lamb LE, Bartolone SN, Ward E, Chancellor MB. Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. PLoS One. 2020;15(6):e0234682. 
  20. Dao Thi VL, Herbst K, Boerner K, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples [published online ahead of print, 2020 Jul 27].
Testagem em massa da COVID-19

Testagem em massa da COVID-19

VOCÊ SABE POR QUE A TESTAGEM EM MASSA DA COVID-19 É FUNDAMENTAL PARA O RETORNO SEGURO DE EMPRESAS E CENTROS EDUCACIONAIS?

 

O Brasil iniciou nas últimas semanas o processo de afrouxamento das medidas de isolamento social iniciadas em março, quando o número de casos da COVID-19 passou a aumentar exponencialmente. Com a epidemia ainda não controlada e sem perspectivas de vacinas nos próximos meses, muitos se perguntam nesse momento sobre a segurança do retorno às atividades sociais e econômicas. 

Já sabemos que apenas isolar pessoas com sintomas da COVID-19 não é suficiente para combater a epidemia porque assintomáticos e, principalmente, pré-sintomáticos, podem transmitir a doença. Dados preliminares sugerem que até 50% da transmissão possa ser “silenciosa” (1). 

 

Uma opção segura para o retorno 

Estudos publicados recentemente, porém, mostram um possível caminho para o retorno seguro de escolas e empresas: testagem em massa da COVID-19, com testes realizados frequentemente em curto intervalos de tempo e com rapidez na entrega dos resultados (2,3,4). Ao identificar assintomáticos e pré-sintomáticos, essa estratégia reduz a transmissão da doença e impede o surgimento de novos surtos

A testagem em massa identifica assintomáticos e pré-sintomáticos e é a melhor estratégia para reduzir a transmissão da COVID-19 e impedir novos surtos

Um desses estudos mostrou que para o controle da COVID-19, frequência de testagem e prazo de entrega dos resultados são fatores até mais importantes do que sensibilidade do teste (2).

Outro estudo demonstrou que a testagem a cada dois dias com um teste de 70% de sensibilidade seria suficiente para garantir o retorno seguro ao campus de 5.000 estudantes de uma universidade hipotética (3).

A testagem ampla deve ser aplicada também para ambientes com grupos de risco, conforme demonstrado em um estudo norte-americano que testou mais de 30.000 residentes e funcionários de asilos de Massachusetts.  Os resultados mostraram que 71% dos residentes e 92.7% dos funcionários que testaram positivo para a COVID-19 não apresentavam sintomas no momento da testagem (4).  

 

A diferença entre os testes para COVID-19

É importante ressaltar que somente testes moleculares, que identificam o RNA do vírus na amostra do paciente infectado, como testes de RT-LAMP e RT-PCR, devem ser utilizados para testagem em massa da COVID-19 (5,6). 

Os testes de anticorpo, popularmente conhecidos como “sorológicos”, analisam a resposta do organismo a um agente infeccioso, e nesse caso, identificam anticorpos IgA, IgM e IgG que o corpo produz para combater o SARS-CoV-2. Os testes de anticorpo servem para saber quem já teve COVID-19 no passado e não devem ser usados para rastreio de infecção ativa (7). Devido ao tempo que o corpo demora para produzir anticorpos contra uma infecção (janela imunológica), os testes sorológicos só conseguem detectar anticorpos entre uma a três semanas após o início dos sintomas, mas esse tempo pode variar. 

Os testes sorológicos, portanto, não são capazes de detectar uma infecção ativa. Pessoas infectadas com SARS-CoV-2 podem erroneamente interpretar um resultado negativo em um teste de anticorpo como ausência de infecção. Sendo que o resultado negativo se deu devido a características inerentes ao teste e significa apenas que não houve tempo ainda do organismo produzir anticorpos suficientes para serem detectados.

 

É possível adotar hoje no Brasil a estratégia de testagem em massa recomendada pelos estudos internacionais?

Sim. A Mendelics desenvolveu o #PARECOVID que permite que as empresas e escolas planejem e executem seu retorno às atividades de forma segura com testagens frequentes e seguindo as recomendações dos estudos internacionais. 

O teste #PARECOVID utiliza a técnica de RT-LAMP que é capaz de detectar o vírus na saliva a partir dos primeiros dias de infecção. Os resultados são liberados em até 24 horas e os infectados podem ser precocemente identificados e isolados. O teste também tem custo acessível viabilizando a testagem frequente. 

A coleta pode ser realizada na própria empresa ou centro educacional e não requer um profissional da saúde. 

A Mendelics conta uma equipe dedicada exclusivamente ao suporte de clientes #PARECOVID. Entre em contato conosco pelo telefone (11) 4637-4356 ou acesse nosso site para que possamos auxiliá-lo no retorno seguro da sua empresa ou centro educacional.

 

Glossário

TRANSMISSORES DA COVID-19

Assintomático

Indivíduo infectado com SARS-CoV-2 que não terá sintomas da doença durante todo o período da infecção.  

Pré-sintomáticos

Indivíduo infectado com SARS-CoV-2 que não exibiu sintomas até o momento da testagem, mas que terá sintoma(s) da COVID-19 em algum momento durante o período de infecção. 

Sintomáticos

Indivíduo infectado com SARS-CoV-2 que tem sintomas no momento da testagem.

 

TIPOS DE TESTES PARA COVID-19.

Teste de Anticorpo

O que detecta: anticorpos IgA, IgM e IgG que o corpo produz para combater o SARS-CoV-2

– Para que serve: para saber se a pessoa já teve a doença no passado e para estudos epidemiológicos populacionais

Teste de Antígeno

– O que detecta: fragmentos do SARS-CoV-2, como as proteínas da cápsula viral

– Para que serve: pode detectar o vírus no organismo já no início da infecção, mas a baixa sensibilidade e especificidade da maioria dos testes disponíveis no mercado têm limitado a sua utilização

Testes Moleculares

– O que detecta: segmentos específicos do genoma do SARS-CoV-2 

– Tipos de Testes moleculares: RT-PCR (Reação em cadeia da polimerase com transcriptase reversa), RT-LAMP (amplificação isotérmica mediada  por loop  com  transcriptase  reversa) e Sequenciamento

– Para que serve? Identifica a doença já nos primeiros dias após o início da infecção (fase ativa), sendo fundamentais para o isolamento precoce dos infectados.

 


Referências

1) Seyed M. et al.The implications of silent transmission for the control of COVID-19 outbreaks. Proceedings of the National Academy of Sciences Jul 2020, 117 (30) 17513-17515. 

2) Paltiel AD, Zheng A, Walensky RP. Assessment of SARS-CoV-2 Screening Strategies to Permit the Safe Reopening of College Campuses in the United States. JAMA Netw Open. 2020;3(7):e2016818.

3) Larremore DB, Wilder B, Lester E, et al. Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance. Preprint. medRxiv. 2020;2020.06.22.20136309

4) Lennon, NJ et al. Comparison of viral levels in individuals with or without symptoms at time of COVID-19 testing among 32,480 residents and staff of nursing homes and assisted living facilities in Massachusetts.

5) Watson J, Whiting PF, Brush JE. Interpreting a covid-19 test result. BMJ. 2020;369:m1808, 2020.

6) Lamb LE, Bartolone SN, Ward E, Chancellor MB. Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. PLoS One. 2020;15(6):e0234682. 

7) Centers for Disease Control and Prevention (CDC). Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html. Acessado em 15/07/2020. 

 

ENTENDA AS DIFERENÇAS ENTRE OS TESTES PARA O NOVO CORONAVÍRUS (COVID-19)

ENTENDA AS DIFERENÇAS ENTRE OS TESTES PARA O NOVO CORONAVÍRUS (COVID-19)

VOCÊ SABE AS DIFERENÇAS ENTRE OS TESTES DO COVID-19?

Na China, em dezembro de 2019, foram identificados vários casos de pneumonia de causa desconhecida, relacionados a um mercado de frutos-do-mar na cidade de Wuhan. Essa nova doença causada por um coronavírus, SARS-CoV-2,  recebeu o nome COVID-19. 

Apenas algumas semanas após a identificação do primeiro caso da COVID-19,  vários tipos de testes foram desenvolvidos e disponibilizados por laboratórios de todo o mundo (1). 

Entenda mais sobre os testes para o novo coronavírus (COVID-19) e conheça o novo teste molecular  #PARECOVID,  que está solucionando os obstáculos da testagem no Brasil.

 

1. TESTES DE ANTICORPO

Os testes de anticorpo, popularmente conhecidos como “sorológicos”, analisam a resposta do organismo a um agente infeccioso, e nesse caso, identificam anticorpos IgA, IgM e IgG que o corpo produz para combater o SARS-CoV-2

Devido ao tempo que o corpo demora para produzir anticorpos contra uma infecção (janela imunológica), os testes para COVID-19 conseguem detectar anticorpos entre uma a três semanas após o início dos sintomas, mas esse tempo pode variar (2).

Os testes de anticorpos não detectam a doença no início da infecção (fase aguda), portanto, não é recomendado o seu uso para diagnóstico (2).  

Esses testes servem, principalmente, para saber se o paciente já teve a doença no passado e para estudos epidemiológicos populacionais. Até o momento não há evidências do tempo em que anticorpos para o SARS-CoV-2 persistem no organismo após a infecção.

 

2. TESTES DE ANTÍGENOS

Os testes de antígenos identificam fragmentos do vírus, como as proteínas da cápsula viral, no organismo do paciente.

Embora este teste possa detectar o vírus no organismo já no início da infecção, a baixa sensibilidade e especificidade da maioria dos testes disponíveis no mercado tem limitado a sua utilização (3).

 

3. TESTES MOLECULARES

Os testes moleculares ficaram conhecidos popularmente como testes de “PCR”.

O “PCR” (reação em cadeia de polimerase) é uma técnica de biologia molecular capaz de produzir milhares ou até milhões de cópias de um segmento de DNA ou RNA, em um processo conhecido como amplificação

Embora existam importantes diferenças, a depender da técnica utilizada (RT-LAMP, RT-PCR, Sequenciamento), os testes moleculares identificam segmentos específicos do genoma do vírus SARS-CoV-2 na amostra do paciente infectado, através de diferentes estratégias de amplificação.  

Estes testes informam se o indivíduo está com a doença já nos primeiros dias após o início da infecção (fase aguda da doença), sendo fundamentais para o isolamento precoce dos infectados. 

Por outro lado, o teste molecular não é capaz de identificar se a pessoa já teve a doença no passado, já que a sensibilidade é reduzida após a fase de infecção aguda devido à diminuição do vírus e do seu RNA no organismo.

 

TESTE DE RT-PCR

O teste molecular mais utilizado no mundo é o RT-PCR (Reação em cadeia da polimerase com transcriptase reversa) (3). 

Após o RNA do vírus ser transformado em DNA, processo conhecido como transcrição reversa (RT), sequências específicas do vírus são amplificadas. Caso haja, de fato, RNA do SARS-CoV-2 na amostra, sondas irão detectar a sua presença e emitir um sinal de resultado positivo. 

Apesar de ser um teste sensível e específico, problemas de falta de suprimento de reagentes, devido a enorme demanda mundial, e da quantidade insuficientes de equipamento de PCR em tempo real no Brasil, inviabilizaram desde o início da pandemia a aplicação desse tipo de teste em larga escala e a entrega de resultado em prazos curtos. Por isso, há um importante obstáculo para testagem de COVID-19 por RT-PCR.

Outro grande problema é que RT-PCR é feito a partir da coleta de swab nasofaríngeo, no qual um cotonete é introduzido na garganta ou no nariz do paciente. 

Além do desconforto que a coleta causa nos pacientes, há também o risco de contaminação para os profissionais de saúde. Os kits de coleta de swab também estão em falta no mercado, o que tem contribuído para a limitação da capacidade de testagem no Brasil.

 

TESTE DE SEQUENCIAMENTO 

Em janeiro de 2020 foi publicado o primeiro estudo de sequenciamento do genoma do vírus. O estudo mostrou que a COVID-19 era causada por um vírus de RNA de fita única, com um tamanho de genoma de 29.903 bases (por comparação, o genoma humano tem 3 bilhões de bases) e que pertencia a família dos coronavírus (CoV) (7;8). 

Desde então vários pesquisadores ao redor do mundo conduzem estudos que analisam o genoma do vírus, utilizando principalmente estratégias de sequenciamento (Sanger, Sequenciamento de Nova Geração e Nanopore). 

Até o momento, no mundo todo, já foram sequenciados mais de 66.000 genomas de SARS-CoV-2 e os dados são disponibilizados nos bancos de dados públicos, como o Global Initiative on Sharing All Influenza Data (GISAID) (9).

Os dados serão fundamentais para compreendermos a origem do vírus, identificar novas mutações em seu genoma, e também para o desenvolvimento de vacinas e prevenção de novas pandemias.

Assim como testes de RT-PCR e RT-LAMP, um teste de sequenciamento do vírus pode identificar pessoas infectadas logo no início da infecção. Mas até o momento essa estratégia vem sendo pouco utilizada pelos laboratórios clínicos devido, principalmente, ao alto custo desse tipo de testagem.

 

TESTE DE RT-LAMP  (#PARECOVID)

O RT-LAMP (amplificação isotérmica mediada  por  loop  com  transcriptase  reversa), é uma técnica molecular já amplamente utilizada para o diagnóstico de várias doenças infecciosas como Dengue, Chikungunya, Hepatite A e Zika (4;5). 

Em junho a Mendelics disponibilizou um teste de RT-LAMP específico para COVID-19. O teste recebeu o nome de #PARECOVID (6).

Assim como o RT-PCR, o RT-LAMP, inclui uma etapa de transcrição reversa (RT), na qual o RNA é transformado em DNA. Em seguida, regiões específicas do vírus são amplificadas milhares de vezes, em temperatura fixa, por cerca de uma hora.

O teste de RT-LAMP, que tem especificidade superior a 99% e sensibilidade equivalente ao RT-PCR, de acordo com os dados de validação feito em parceria com o hospital Sírio-Libanês, é realizado diretamente na saliva do paciente. O tempo máximo de entrega dos resultados são 24 horas

Além do protocolo ser mais simples e rápido do que o RT-PCR, o RT-LAMP não requer o uso de aparelhos laboratoriais complexos, como termociclador em tempo real ou de reagentes em falta na pandemia. 

O #PARECOVID é o teste molecular com a maior capacidade de testagem desenvolvido até o momento no Brasil.  Lançado há poucas semanas, o #PARECOVID já vem sendo utilizado por muitas empresas em seus planos de retorno seguro ao trabalho. Por enquanto, o teste é disponibilizado apenas para empresas.

 

Tipos de Testes para o novo coronavírus COVID-19 antigeno anticorpo sequenciamento RT LAMP

(clique na imagem para ampliar)

 

Quer saber mais? Deixe sua pergunta nos comentários abaixo ou acesse a página #PARECOVID em nosso site.

Referências:

(1) Acurácia dos testes diagnósticos registrados na ANVISA para a COVID-19. Maio/2020. Departamento de Gestão e Incorporação de Tecnologias e Inovação em Saúde – DGITIS/SCTIE

(2) Centers for Disease Control and Prevention (CDC). Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html. Acessado em 15/07/2020. 

(3) NOTA TÉCNICA COVID-19 N° 06/2020 – GEVS/SESA/ES. Avaliação técnica e aplicabilidade dos testes diagnósticos laboratoriais para COVID – 19.

(4) Notomi T et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.

(5) Wang X, Yin F, Bi Y, et al. Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification. J Virol Methods. 2016;238:86‐93.4

(6) #PARECOVID. Disponível: https://www.mendelics.com/parecovid/

(7) Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). 

(8) Zhu N, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/NEJMoa2001017

(9) Disponível em https://www.gisaid.org/. Acessado em 16/07.