Sequenciando

Ideias

Ilustração de uma sequência de DNA sendo analisada em um sequenciador Sanger
Início » Tecnologia » Sequenciamento Sanger: vantagens para a medicina contemporânea

Sequenciamento Sanger: vantagens para a medicina contemporânea

15 outubro, 2021 | Doenças e Exames, Tecnologia

Entenda mais sobre a técnica de sequenciamento Sanger, que possibilitou o sequenciamento do primeiro genoma humano e como ela ainda é importante 20 anos depois.

 

História do Sequenciamento Sanger

A tecnologia de sequenciamento Sanger surgiu na década de 70 e foi o primeiro grande passo para o sequenciamento massivo de DNA, sendo conhecida hoje como sequenciamento de primeira geração. Essa foi a tecnologia que permitiu o lançamento do Projeto Genoma Humano em 1991, que prometia sequenciar o primeiro genoma humano nos 15 anos seguintes.

Em 2001, o Projeto Genoma Humano publicava o rascunho do primeiro genoma humano, 4 anos antes do previsto, graças ao Sanger e ao desenvolvimento de técnicas de sequenciamento massivo em paralelo, também conhecido como Sequenciamento de Nova Geração (NGS), que teve início na década de 1990.

 

Sequenciamento Sanger x Sequenciamento de Nova Geração

A tecnologia NGS é hoje a principal ferramenta utilizada para sequenciamento na área diagnóstica. Com ela é possível sequenciar várias regiões do DNA, e várias amostras, ao mesmo tempo, reduzindo muito o custo da análise por amostra. No entanto, esse tipo de ensaio tem suas limitações, que podem, em muitos casos, ser sanadas pela tecnologia Sanger.

Na imagem abaixo é possível ver que, com NGS, o DNA é quebrado em pequenos fragmentos, que são sequenciados e depois realinhados através de ferramentas de bioinformática, como um grande quebra-cabeças. Isso dificulta analisar regiões homólogas (semelhantes) e repetitivas do DNA por NGS, pois não sabemos onde encaixar esses fragmentos.

Ilustração comparando a análise de regiões homólogas (semelhantes) por sequenciamento de nova geração (NGS) e por sequenciamento Sanger

Figura 1. Comparação entre análises de regiões homólogas por Sequenciamento de Nova Geração (NGS) e por Sequenciamento Sanger.

Esse problema pode ser resolvido sequenciando fragmentos mais longos, que compreendam as regiões flanqueadoras (regiões que cercam esses trechos). Com peças maiores, é mais fácil resolver o quebra-cabeça.

Enquanto o NGS analisa fragmentos de até 300 pares de bases (pb), o sequenciamento Sanger permite analisar fragmentos que chegam a cerca de 800pb, sendo mais indicado para a análise de regiões complexas.

O sequenciamento tipo Sanger utiliza alguns nucleotídeos modificados com fluoróforos (moléculas que emitem luminescência), e resulta em cópias com diferentes tamanhos da sequência do DNA de interesse, mas que se iniciam na mesma posição, como mostrado na figura abaixo.

Os fragmentos são separados por tamanho e as bases finais de cada cópia são identificadas pela fluorescência.

Ilustração de como é feito o sequenciamento sanger, onde os nucleotídeos alterados com fluoróforos identificam a inserção de cada base que compõe a sequência

Figura 2. Sequenciamento Sanger. Os fragmentos sequenciados são identificados por tamanho e pela fluorescência emitida pela última case adicionada. Dessa forma é possível determinar a sequência de nucleotídeos da região de interesse.

 

Dessa forma, o sequenciamento Sanger permite identificar variantes genéticas em sequências mais longas de DNA, sem a necessidade de uma etapa computacional de reconstrução dos trechos sequenciados.

 

Sanger no diagnóstico de doenças causadas por regiões complexas

Um bom exemplo do uso do sequenciamento Sanger na medicina atual é no diagnóstico da Hiperplasia Adrenal Congênita (CAH) resultante da deficiência da enzima 21-hidroxilase.

Essa doença leva à produção excessiva de hormônios andrógenos (masculinos), podendo causar o desenvolvimento de genitália ambígua em pessoas do sexo feminino, além de puberdade precoce em ambos os sexos.

Cerca de 75% dos casos também apresenta deficiência do hormônio aldosterona, que leva à dificuldade de reter água e sais, causando desidratação, baixo volume de sangue circulante (hipovolemia) e pressão baixa (hipotensão).

A CAH com deficiência de 21-hidrogenase é causada por alterações no gene CYP21A2, que possui um pseudogene homólogo, o CYP21A1P. Esse pseudogene é uma região do DNA muito semelhante ao gene CYP21A2, porém não é funcional, ou seja, a partir dele não é possível produzir a enzima 21-hidroxilase.

Durante a formação dos gametas ocorrem alguns eventos de recombinação do DNA, nos quais os pares de cromossomos se recombinam resultando em sequências híbridas daquelas que herdamos dos nossos pais. Durante esse processo, regiões homólogas (CYP21A2 e CYP21A1P, por exemplo) podem ser indevidamente pareadas e, consequentemente, trocadas durante a recombinação.

Como mostrado na figura abaixo, tanto a troca de regiões entre o gene CYP21A2 e o pseudogene CYP21A1P, quanto a união deles (resultado de uma deleção) podem comprometer a produção da 21-hidrogenase. Cerca de 95% das alterações genéticas que levam à CAH são resultantes de recombinações entre as regiões homólogas.

Ilustração dos eventos de recombinação e deleção na região do gene CYP21A2 e do pseudogene CYP21A1P que resultam em Hiperplasia Adrenal Congênita (CAH) com deficiência da enzima 21-hidroxilase.

Figura 3. Ilustração dos eventos de recombinação e deleção na região do gene CYP21A2 e do pseudogene CYP21A1P que resultam em Hiperplasia Adrenal Congênita (CAH) com deficiência da enzima 21-hidroxilase.

O sequenciamento de Sanger é capaz de identificar essas recombinações e atingir uma taxa diagnóstica mais alta que os painéis de NGS, que não conseguem sequenciar toda a região de interesse em uma única sequência. Por isso, Sanger é a metodologia mais indicada para o diagnóstico de CAH com deficiência de 21-hidrogenase.

Na Mendelics o diagnóstico da Hiperplasia Adrenal Congênita resultante da deficiência da enzima 21-hidroxilase é feito por Sanger e MLPA, para a identificação das variantes resultantes de recombinações e das deleções, respectivamente, atingindo uma alta taxa diagnóstica para a doença.

Conheça o exame

 

Consulte sempre seu médico e, se precisar de um exame diagnóstico, entre em contato com a nossa equipe.


Referências

Khan Academy – Sequenciamento de DNA

National Human Genome Research Institute (NHGRI) – DNA Sequencing Costs: Data

National Organization for Rare Disorders – Congenital Adrenal Hyperplasia

Nimkarn S, et al. 21-Hydroxylase-Deficient Congenital Adrenal Hyperplasia. 2002. In: Adam MP, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021.

Pignatelli D., et al. The complexities in genotyping of congenital adrenal hyperplasia: 21-Hydroxylase deficiency. 2019. Frontiers in Endocrinology, vol. 10.

2 Comentários

  1. Julio Cesar Loguercio Leite

    Ótimo

    Responder
    • Equipe Mendelics

      Olá Julio

      Agradecemos o seu interesse no nosso conteúdo!
      Se inscreva na nossa newsletter para receber atualizações dos nossos artigos.

      Responder

Deixe seu comentário

ASSINE E RECEBA NOSSOS CONTEÚDOS EXCLUSIVOS

A MENDELICS

Mendelics Análise Genômica

Especializado em análise genômica no Brasil. Com o processo 100% nacional, são permitidos resultados muito mais ágeis, completos e acessíveis.

Saiba Mais